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Abstract

Cell differentiation is controlled via complex interactions of genomic regu-
latory sites such as promoters and enhancers that lead to precise cell type-
specific patterns of gene expression through a process that is not yet well
understood. Local chromatin accessibility at these sites is a requirement of
regulatory activity, and is therefore an important component of the gene reg-
ulation machinery. To understand how DNA sequence drives local chromatin
accessibility within the context of immune cell differentiation, we examined
a dataset of open chromatin regions (OCRs) derived with the ATAC-seq
assay from 81 closely related mouse immune cell types. We trained a model
that predicts local chromatin accessibility in each cell type based on DNA
sequence alone, then analyzed the model to extract informative sequence
features. We selected and optimized a convolutional neural network (CNN),
which we named AI-TAC, that takes as input a 250bp DNA sequence of
a potential OCR and predicts the relative chromatin activity at that OCR
across the 81 different immune cell types in our dataset. Test dataset re-
sults showed that for many OCRs, AI-TAC is able to predict chromatin state
with a high degree of accuracy, even differentiating between closely related
cell types. Using CNN interpretability methods we were able to identify
sequence motifs that are used by the model to make its predictions, many
of which match closely to known transcription factor (TF) binding sites.
The cell type - specific influence assigned to each motif by AI-TAC in many
instances recapitulates prior biological knowledge about the role of these
TFs in immune cell differentiation, lending credibility to our model and in-
terpretation methods. Finally, we attempt to discern if the model detected
any combinatorial activity between TFs that is predictive of chromatin ac-
cessibility. In summary, we showed that a CNN can be trained to discern
the chromatin accessibility among even highly similar cell types, and that
biologically relevant features can be extracted from the model using deep
learning interpretation methods.
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Lay Summary

All cells in an organism contain an identical genetic blueprint (in the form of
DNA sequence) that encodes all the information necessary for the organism
to develop and function. However, different cell types look and behave in
highly variable ways; for example, skin cells are very different from blood
cells. This is possible because genes can be selectively switched on or off
in different cells to establish distinct forms and functions. How genes are
activated and deactivated at the right time during the process of cell dif-
ferentiation - the formation of many different specialized cell types from a
single stem cell - is not yet well understood.

This thesis aims to improve the understanding of the differentiation pro-
cess of mouse immune cells by examining one particular regulatory “switch”
that controls which genes are on in a given cell. At any one time most of
the DNA in each cell is tightly packaged, but regions required to activate
genes need to be open and accessible to function. Which regions of DNA are
open can therefore determine which genes are switched on. In this work, we
study how DNA accessibility in different immune cells is determined locally
by the DNA sequence itself. Insight into this process would provide one
piece of the puzzle of understanding how the DNA sequence is interpreted
differently by each cell to produce distinctive cell types.
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Chapter 1

Introduction and
Background

1.1 Introduction

Although all cells in multicellular organisms share the same genetic blueprint,
they exhibit widely varying morphologies and perform very different func-
tions. These differences are in large part owed to cell-specific patterns of gene
expression, which are established during cell differentiation via complex epi-
genetic mechanisms. However, there are currently gaps in our understanding
of the mechanisms by which these sequences coordinate precise programs of
gene expression[41].

It is established that regulatory regions can enhance or suppress tran-
scription of individual genes via the activity of proteins called transcription
factors (TFs) that bind DNA in a sequence-specific manner. Although the
sequence preference of many individual TFs has been identified, overall en-
hancer activity is more challenging to predict because TFs act in a coop-
erative manner that has not been well characterized [41]. Additionally, the
frequency of these TF binding events is mediated by many epigenetic mech-
anisms such as DNA accessibility, the expression levels of the TF itself and
other factors, and DNA methylation within the binding sequence [45].

Our work aims to help elucidate the regulatory mechanisms of non-
coding genomic regions by examining cell type-specific effects of sequence
on local DNA accessibility, which serves as an important mediator of reg-
ulatory activity. We analyze a dataset of open chromatin regions (OCRs)
from dozens of isolated mouse immune cell types across the hematopoietic
differentiation trajectory, created by the ImmGen consortium [24]. We ap-
proach this task by building a model that can predict cell-specific chromatin
accessibility at potential OCR sites based on their sequence alone and then
deriving the sequence features weighted most heavily by the model when
making its predictions.

The remainder of this chapter is primarily dedicated to an overview
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1.2. Biological Background

of relevant background information. We first describe what is currently
known about the role of chromatin state in gene regulation as well as the
mechanisms by which chromatin accessibility is established and maintained.
Next, we provide an overview of methods that have been previously used
to understand chromatin accessibility as a function of DNA sequence. The
final section is a summary of the contributions of this thesis.

1.2 Biological Background

1.2.1 Immunological Genome Project

The Immunological Genome Project (ImmGen) is a collaboration between
immunology and computational biology research groups that aims to thor-
oughly characterize the gene regulatory networks of the entire mouse im-
mune system. By generating a large number of genome-wide datasets across
a wide range of immune cell types, the consortium intends to build a compre-
hensive understanding of cell type-specific and condition-specific regulatory
mechanisms. The consortium has established rigorously standardized pro-
tocols for animal care, cell isolation and data generation for all participating
laboratories in order to produce consistent, high quality datasets[23].

1.2.2 Transcriptional Regulation

Regulatory regions of eukaryotic genomes are broadly classified into tran-
scription start site-proximal promoters and cis-regulatory elements such as
enhancers, silencers and insulators[35]. The core promoter is located in the
immediate vicinity of a gene’s transcription start site (TSS). The promoter
sequence is sufficient to recruit general transcription factors, RNA Poly-
merase II and other proteins that form the transcriptional machinery that
copies the DNA sequence of the gene into RNA[2]. However, transcription of
a gene is often weak without additional regulatory activity at distal enhancer
sites[41].

Enhancer sequences are characterized by their ability to affect transcrip-
tion rates at large distances to their target TSS and independently of their
relative orientation[41]. Enhancers function by recruiting TFs that recog-
nize and bind short (typically 6-10bp) sequence motifs[41]. These TFs can
then increase transcription rates of the target gene by recruiting transcrip-
tion complexes to the gene promoter, either directly or via their binding
partners. These long-range interactions are enabled by DNA looping which
brings active enhancers into spatial proximity of their target promoter[41].

2



1.2. Biological Background

Some TFs act instead to repress transcription rates by interfering with the
recruitment of transcriptional machinery, thus allowing certain enhancers to
act as silencers under specific conditions[35]. Transcription at a single TSS
is regulated via the coordinated activity of multiple enhancer and silencer
sites[45].

Because TF motifs are short and abundant throughout the genome, the
binding affinity of individual TFs alone does not account for precise cellular
programs such as differentiation. Instead, the activity at a single enhancer
site is the cumulative outcome of the binding of many different TFs. In the
simplest case, the observed effect of multiple TFs is additive - the activity
at a given enhancer sequence is proportional to the concentrations of the
individual TFs for which binding sites are present. However, more precise
regulatory “switches” require cooperativity between TFs. In some cases,
TF cooperativity results from physical protein-protein interaction between
adjacently bound TFs that enhances their binding affinity to their respective
binding sequences. Alternatively, two TFs bound to the same enhancer
may be responsible for recruiting the same cofactor or different components
of a multi-protein complex. TFs may also facilitate the binding of other
factors by triggering local DNA bending, or even by changing the sequence
specificity of another TF through protein-protein interactions[45].

There are multiple models for how the sequence architecture of an en-
hancer enables its function, with evidence that each model may apply to
some enhancers but not others. The enhanceosome model proposes that a
specific, ordered protein interface is necessary for the full activation of an
enhancer, requiring strict motif positioning within its sequence[45]. Most en-
hancers, however, do not seem to exhibit such strict motif grammar, instead
containing variable motif subsets and spatial arrangements. The billboard
model accounts for this flexible motif grammar by proposing that although
some TFs bind cooperatively, others may act on an enhancer in an addi-
tive or independent way, thus allowing for the relative order of some motifs
to change without significantly impacting enhancer activity[45]. Another
proposed model is the “TF collective” that suggests that protein-protein
interactions can recruit necessary TFs in cases where their motifs are not
themselves present in the enhancer sequence. Observations show that differ-
ent TF composition and ordering can lead to very similar enhancer activity
patterns in some cases, but in other cases these activity patterns are sen-
sitive to changes in motif positioning even for the same TF set, providing
evidence that none of the described models apply universally to all enhancer
sites[45].

Insulators are specific types of regulatory elements that are responsi-

3



1.2. Biological Background

ble for forming and maintaining higher order DNA structures that enable
enhancer-promoter interactions. They are broadly categorized into two
types: barrier and enhancer-blocking[16]. Barrier insulators maintain ac-
tive chromatin regions by blocking the spread of heterochromatin forma-
tion, thus ensuring certain genomic regions are not transcriptionally silenced.
Enhancer-blocking insulators were so named because of their ability to block
enhancer-promoter interactions when placed between the two. They func-
tion by anchoring themselves to nuclear structures or to other insulators
via TF interactions, thus establishing DNA loop domains. In vertebrates,
CTCF is an especially prevalent TF at insulator sites that is able to form
bonds with itself and other nuclear proteins. The formation of these loop
domains brings some enhancers and promoters within spatial proximity of
each other while blocking others from interacting[16].

1.2.3 Chromatin Accessibility

At any given time, the majority of eukaryotic DNA is packaged into a highly
condensed chromatin structure that makes it inaccessible for binding by
most TFs[31]. The basic unit of chromatin is called a nucleosome, and is
composed of approximately 150bp of DNA wrapped around a protein oc-
tamer comprised of four types of core histones. Nucleosomes are formed
along the DNA string like beads, allowing the DNA to be further con-
densed by linker histones that bind inter-nucleosomal DNA and interact
with the core histones. For processes that require DNA-protein interac-
tions, such as DNA transcription, replication and repair, the DNA must be
made accessible[4]. Regulatory genomic regions that operate via TF bind-
ing likewise require chromatin accessibility to fulfill their regulatory func-
tions. Unsurprisingly, active enhancers, promoters and insulators coincide
with nucleosome-depleted regions of the genome, which are fully accessible
stretches of DNA typically the length of one nucleosome (150-250bp)[31].

These open chromatin regions (OCRs) are established and maintained
through several different mechanisms. Targeted nucleosome repositioning
can be accomplished by a special class of TFs called pioneer factors that
are able to bind nucleosomal DNA in a sequence-specific manner, and then
displace nucleosomes either independently or by recruiting active chromatin
remodelers. Alternatively, some TFs may bind inter-nucleosomal DNA and
then initiate processes that destabilize and displace neighboring nucleo-
somes. Another proposed mechanism is that TFs bound to an accessible
enhancer may recruit chromatin remodelers that evict nucleosomes at distal
regulatory sites. Finally, nucleosomes in regulatory regions have relatively
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1.2. Biological Background

high turn-over rates and TFs present in high enough concentrations may
be able to passively out-compete histone proteins for DNA binding, thus
ensuring local chromatin accessibility[31].

There is additionally evidence that CpG islands, which are approxi-
mately 1kb long regions of the genome with high GC content, are predis-
posed to low nucleosome occupancy[11]. These regions have high overlap
with a subset of gene promoters, and may be responsible for maintaining
chromatin accessibility for this set of regulatory sites[11].

1.2.4 Measuring Chromatin Accessibility

Here we describe some of the more popular methods for assaying genome-
wide chromatin accessibility. Although each of these assays has different
kinds of sequence bias, the accessible chromatin regions identified via all
these methods are generally well correlated[31].

The earliest method for detecting large-scale chromatin accessibility pat-
terns, published in 2006, used DNase I proteins to preferentially cleave only
accessible DNA, then hybridize the DNA fragments onto tiled microarrays.
Because microarrays are limited in throughput, this method is inadequate for
measuring accessibility genome-wide. DNase I hypersensitive site sequenc-
ing (DNase-seq), developed several years later, overcomes this problem by
using high-throughput short-read sequencing to characterize the accessible
DNA fragments produced by DNase I cleavage[31].

Assay for transposase accessible chromatin with high-throughput se-
quencing (ATAC-seq) is a more recent method for profiling chromatin state
genome-wide[6]. It uses hyperactive Tn5 transposase proteins that pref-
erentially cut nucleosome-free DNA and simultaneously insert sequencing
adaptors into the ligated DNA fragments. The tagged DNA fragments are
then amplified and sequenced. After the sequencing reads are aligned to
the reference genome, OCRs can be identified by finding areas with high
numbers of aligned reads[6]. This protocol is simple and much faster than
DNase-seq, taking hours rather than days to generate the sequencing li-
braries. Additionally it can profile samples with much smaller quantities of
cells, on the order of thousands of cells rather than hundreds of thousands
required for DNase-seq[31].

MNase-seq and NOMe-seq are another two recently developed methods
for characterizing chromatin state[31]. MNase-seq or micrococcal nuclease
sequencing uses MNase endonuclease/exonuclease proteins to digest internu-
cleosomal DNA. The remaining DNA fragments, that were protected by hi-
stones during digestion, are sequenced and mapped to the reference genome

5



1.3. Related Work

to identify DNA regions occupied by nucleosomes[31].
NOMe-seq stands for nucleosome occupancy and methylome sequencing

and can be used to profile both methylation and chromatin state simultane-
ously. It utilizes a viral methyltransferase that methylates GC dinucleotides
rather than the CG dinucleotides that are normally methylated in humans
and mice. Because only accessible DNA is methylated, whole-genome bisul-
fite sequencing can then be used to identify OCRs as well as methylation at
CpG sites. A much higher number of reads is required for NOMe-seq than
the other methods described above because it involves sequencing the whole
genome rather than selected fragments. However, this process also elimi-
nates enrichment bias which is present in the other methods, thus allowing
for a better quantification of chromatin accessibility[31].

1.3 Related Work

Here we provide an overview of methods that have been used to under-
stand the effect of DNA sequence on local chromatin accessibility. This is
by no means an exhaustive list, but we attempt to mention all the main
categories of methods used for this task. Notably, we do not detail any of
the approaches that exploit multi-omics data or genome annotation (rather
than sequence information alone) to understand the mechanisms of local
chromatin accessibility.

We start by describing approaches that rely on identifying individual TF
binding sites within open chromatin regions, either by using known motifs
or discovering them de novo. Next, we delve into machine learning methods
designed to classify the chromatin state at putative regulatory regions as
either accessible or inaccessible based on their sequence. The features most
heavily weighted by these models can then be used to understand which mo-
tifs within the sequence are biologically meaningful predictors of chromatin
state. Finally, we provide an overview of deep learning models designed to
predict chromatin state from DNA sequence and the interpretation methods
that have been applied to these models to understand how the input features
are weighted by the model when making predictions.

1.3.1 Identification of Transcription Factor Binding Sites

One way of understanding regulatory DNA sequences is by identifying the
presence of TF binding sites. For example, the over-representation or under-
representation of certain motifs in OCRs can be used to infer which TFs are
important for the regulatory activity of a given cell type. TF binding sites
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1.3. Related Work

can be identified using their known motifs, or they can be discovered de
novo via methods that find over-represented k-mers within the input data.

TFs bind short motifs, typically 6-10bp, that can vary by 1 or 2 bases
from a consensus binding sequence[47]. It’s hypothesized that this flexibility
in binding preference, which leads to a range of affinities between a TF and
its binding sites, enables precise control of transcription rates rather than
acting as a binary on/off switch. To capture this variability in binding sites,
TF motifs are typically represented as position weight matrices (PWMs)
with 4 entries for every position along the length of the motif, one for each
nucleotide. The entries commonly used are observed nucleotide counts at
each position (these are also called position frequency matrices), the prob-
abilities of observing each nucleotide at each position (also called position
probability matrices), or log-odds scores for each nucleotide at the given
position, defined as:

log2(pij/bj)

where pij is the probability of observing nucleotide j at position i, and bj is
the probability of observing nucleotide j in the background model[19, 47].

There are a number of methods designed to identify the presence of
known TF binding sites within a set of input sequences, for example se-
quences of OCRs. FIMO[18] (Find Individual Motif Occurrences) is one
example of this method type that scans a database of sequences with a
set of known TF PWMs, which can be obtained from databases such as
CIS-BP[50] or JASPAR[14]. For each PWM, FIMO computes a similarity
score to every position within the input sequence, then converts it to a p-
value reflecting the probability of obtaining a similarity score at least as
high on a random sequence. These p-values can then be used to filter for
high-confidence motif occurrences.

To understand how these known motif occurrences relate to chromatin
accessibility additional statistical analysis is required. ChromVAR[39] is a
method designed to correlate motif instances identified with methods such
as FIMO to sample-specific chromatin state. It takes as input a set of
motif occurrences, along with aligned sequencing reads from the chromatin
accessibility assay and locations of open chromatin peaks. For each motif a
deviation score is computed corresponding to the read counts of all OCRs
containing that motif minus the expected read counts at these OCRs (based
on accessibility across all cells), and divided by the expected read counts.
A high positive score indicates that the TF motif is highly correlated with
accessible chromatin in a particular cell type, while a large negative score
suggests a correlation with non-active regions. A deviation score can even
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1.3. Related Work

be computed for pairs of motifs to detect TF cooperativity, although there
are computational limitations on the number of TF pairs that can be tested.

Because PWM-scanning approaches are limited to identifying instances
of known motifs only, it can be advantageous to instead detect over-represented
sequences within a dataset of interest and assemble those into novel motifs.
HOMER[22] is a software package that identifies k-mers that are enriched in
a target sequence set compared to a background sequence set and assembles
them into de novo motifs. It then optimizes the PWMs of these motifs to
be maximally enriched in the target sequence database using the cumulative
hypergeometric distibution function to measure enrichment. This method
can be applied to find motifs associated with chromatin accessibility by
comparing OCR sequences to regions of non-accessible DNA.

1.3.2 Machine Learning Approaches

Machine learning models trained to classify accessible versus inaccessible
genomic regions are able to simultaneously learn many motifs that are pre-
dictive of regulatory activity in the observed data. This class of methods
typically requires the transformation of the input sequences into a k-mer
feature representation. Here, we describe three such methods along with
the advantages and disadvantages of each.

SeqGL[40] represents input sequences using k-mers with wildcard char-
acters to train a logistic regression model for classifying regions as accessible
or inaccessible. It uses a sparse group lasso constraint on k-mers clustered
by similarity to impose similar weights on k-mers that are likely to belong
to the same motif. This model is easily interpretable as the weights cor-
responding to each k-mer represent the importance of that k-mer to the
prediction task at hand. Similar k-mers can furthermore be assembled into
novel motifs.

A popular method called gkm-SVM[17] constructs a similarity kernel
between all the input sequences using gapped k-mers similar to the wild-
card k-mers of SeqGL. The kernel then serves as input into a support vector
machine that is trained to classify genomic regions as accessible or inaccessi-
ble. Although gkm-SVM has excellent classification performance, the kernel
feature representation makes the interpretation stage more challenging.

The Synergistic Chromatin Model (SCM)[21], another k-mer based ap-
proach, is an L1-regularized generalized linear model that makes per-base
pair predictions of chromatin accessibility based on the input sequence. It
represents its inputs as matrices indicating the presence of all possible k-
mers at every position in the sequence. Unlike gkm-SVM and SeqGL, which
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give binary predictions of chromatin accessibility for pre-defined sequences
of interest, SCM outputs a quantitative prediction of chromatin state at a
single base-pair resolution. Because SCM retains k-mer positions within its
input feature space, it can reveal the importance of motifs at specific ori-
entations to the output position. SCM is additionally easily interpretable,
since weights assigned to each k-mer can be directly examined and impor-
tant k-mers can be assembled into PWMs. However, due to the large size
of the input, SCM is somewhat computationally intensive to train.

Although these approaches model additive effects of multiple motifs
within the same sequence, they do not utilize information about the relative
positioning of motifs to make predictions. Motif spacing and orientation is
known to be an important factor in cooperative TF interactions, and the
importance of some motifs may be missed entirely if synergistic effects with
other TF binding sites are not considered.

1.3.3 Deep Neural Networks in Genomics

Deep neural networks(DNNs) are a powerful class of predictive models that
have become very widespread in genomics data analysis. DNNs consists
of multiple layers of “neurons”, with the output of one layer serving as
the input to the consecutive layer. Each neuron is a linear function of the
inputs to that particular layer with a non-linear transformation (called an
activation function) applied to the result (Figure 1.1). These activation
functions enable DNNs to approximate complex non-linear functions rather
than simply being linear transformations of the input.

DNNs are hugely flexible with regards to the output they can produce.
They can be used as binary classifiers or predictors of continuous values,
and the output can be of arbitrary length. All the internal parameters of a
DNN are learned during a supervised training phase. Due to the typically
large number of parameters in one network, a large set of labeled data is
required to train deep models.

For tasks requiring predictions based on DNA sequence, convolutional
neural networks(CNNs) are the most widely used deep learning model.
CNNs are able to model complex, non-linear relationships between the
features of the input sequence while accounting for their relative spacing.
They have been successfully used to predict genomic data such as chromatin
state[29, 53], TF binding[1], and gene expression[52] on the basis of DNA
sequence alone.
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Input layer Hidden layers Output neuron

Figure 1.1: Schematic of a basic DNN. Hidden fully connected layers with
the ReLU activation function, and an output neuron with a sigmoid activa-
tion function.

Convolutional Neural Networks for Predicting Chromatin State

CNNs are a special class of DNNs containing one or more layer of convo-
lutional operators, typically at the start of the network. A convolutional
operator (or filter) is a small matrix of weights that scans the input and
computes the sum of element-wise multiplication between the input and the
filter. During model training, these convolutional filters are optimized to
recognize low-level features of the input that are informative for the partic-
ular classification task. In the case of CNNs trained on DNA sequence data,
the first layer convolutional filters correspond to short sequence motifs.

A benefit of these models is the lack of pre-processing required on the
input - a CNN can process a DNA sequence of any length with no man-
ual input as to the relevant features. In contrast, the methods previously
described require either a pre-specified set of features (in the case of PWM-
scanning methods or “bag of k-mers” methods) or an assumption on the
length of relevant features (in the case of de novo motif discovery methods).
CNNs, on the other hand, can detect relevant features of arbitrary length
within the input DNA sequence.

In this section, we describe several CNN model architectures that have
been used to predict chromatin accessibility. The first three examples,
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DeepSea[53], OrbWeaver[3] and Basset[29], are basic CNNs consisting of
only convolutional and fully connected layers. Then we describe two mod-
els, DanQ[38] and Basenji[28], that incorporate additional features into their
architectures to improve on the performance of vanilla CNNs.

DeepSea[53], developed in 2015, was the first CNN model trained to pre-
dict local chromatin accessibility from DNA sequence. DeepSea was trained
on data from hundreds of different cell lines, containing assays of DNase
I-hypersensitive sites, histones marks, and TF binding events. Training
a model to predict multiple outputs at once, called multi-task learning,
provides more statistical power for optimizing parameters corresponding to
lower-level features (for example, TF motifs that are relevant for both TF
binding and chromatin accessibility predictions). Each model input is a
1000bp sequence centered on a TF binding event and corresponding bina-
rized labels of TF binding, chromatin accessibility and histone marks across
the different cell types. DeepSea consists of 3 convolutional layers, that
encode sequence motifs and their interactions, followed by a hidden fully
connected layer. The final output layer has a sigmoid function applied to
it, which normalizes all the values to be between 0 and 1. These values can
then be interpreted as probabilities - in this case, probabilities of TF binding
events and open chromatin peaks in the given sequence.

The OrbWeaver[3] model, trained on ATAC-seq, DNA methylation, and
mRNA expression data from induced pluripotent stem cells, also utilizes
a very similar architecture to DeepSea to predict chromatin accessibility.
However, rather than learning the first layer filters during training the model
is initialized with PWMs of 1320 known TF motifs. Each first layer filter
has a direct correspondence to a TF, and the relative importance of each
filter can be derived using one of the deep learning interpretation methods,
which are described in more detail in the next section.

The Basset[29] model is very similar to DeepSea, but was trained to
predict only DNA accessibility based on 600bp sequences at DNase I hy-
persensitive sites. The model was trained on 164 different human cell types
simultaneously, also utilizing the multi-task learning approach. It’s architec-
ture varies slightly from DeepSea, with different sized convolutional filters
and an additional hidden fully connected layer before the final output.

The DanQ[38] model performs significantly better than DeepSea on the
same dataset by integrating a CNN with a recurrent neural network. Re-
current neural networks(RNNs) process the elements of an input sequence
in consecutive order while maintaining a memory of the previous elements,
enabling RNNs to model spatial dependencies between sequence features.
DanQ consists of one convolutional layer used for learning sequence motifs
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followed by a bi-directional long short-term memory network, a type of RNN
that combines the output of two networks that process the sequence from
opposite ends.

Although these methods are significantly better at making predictions
than non-deep learning approaches, they are limited to short input sequences
and therefore cannot account for long-range interactions between different
enhancer and promoter sites. Basenji[28] can process input sequences of 131
kilobases to predict, along with other datatypes, the average DNase-seq read
depth in 128bp bin segments across the entire input sequence. This model
is thus able to incorporate information from a much larger sequence context
than the CNNs described above and make predictions that are quantitative
rather than binary. Basenji is able to process such long genomic regions
due to the addition of dilated convolutions after the standard convolutional
layers. Dilated convolutions are very similar to the standard convolution
operator but they contain gaps, so rather than processing adjacent features
they convolve features at pre-defined spaced intervals. This enables them
to share information across long distances within the sequence that would
otherwise require a much deeper network.

Interpretation of Deep CNNs

Although CNNs are highly effective predictive models, they are typically
considered “black boxes” because understanding how they utilize the in-
put features to make predictions is nontrivial. However, there is a grow-
ing field dedicated to developing methods for interpreting deep neural net-
works. Here we describe some examples of methods that have been used
for CNN interpretation in genomics. They are broadly split into three
categories: perturbation-based, backpropagation-based and reference-based
approaches[13].

Perturbation-based approaches are based on perturbing the model input
and measuring the effect on the prediction. A common example of this is
in-silico mutagenesis, where each base pair of the input sequence is changed
one at a time and the effects on model predictions are quantified. This
approach was used by the authors of DeepSea[53] and Basset[29] to identify
the most important bases in the sequence and the most impactful nucleotide
substitutions.

Another approach based on perturbation is the analysis of first layer
filters of the Basset model[29]. Because each first layer filter of a CNN learns
a weight matrix of a short motif, these filters can be directly interpreted as
PWMs of TF binding sites that are informative to the model. To measure
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the relative importance of these PWMs, each filter is removed from the
model and the change in predictions serves as a motif influence score[29].

These perturbation-based approaches, particularly in-silico mutagenesis,
are very computationally intensive since hundreds or thousands of model
predictions need to be calculated to characterize each input sequence. More
importantly, these methods do not account for any redundancies in the fea-
tures - for example, if a sequence contains two motifs that have the same
predictive value for the model, neither will be assigned importance by these
methods. The input features may also have saturated their contribution to
the output, in which case importance of those features may be underesti-
mated.

Backpropagation-based approaches such as saliency maps[43] and guided
backpropagation[46] essentially use the gradient of the model output with
respect to the input features as a measure of importance. These methods are
significantly faster than perturbation-based approaches as the gradient for
all inputs can be computed in a single pass through the network. However,
they do not address the issue of redundant features or the feature saturation
problem, as the gradient would be zero in this realm. Additionally, the ReLU
operator makes it difficult to estimate negative feature contributions when
using gradients.

DeepLIFT[42] and Integrated Gradients[48] attempt to solve these issues
by computing the contribution of all the input elements with respect to
some reference. Integrated gradients computes the integral of the model
gradients as the input features are scaled from some reference (for example
0) to their current values. DeepLIFT, on the other hand, computes how
much the change from reference in each input feature contributes to the
change in the output neurons. These values can be calculated in a highly
computationally efficient manner similar to the backpropagation approaches.
These reference-based methods are able to mitigate the issue of redundant
contributions of input features and the neuron saturation problem, with the
caveat that they require a somewhat arbitrary choice of reference.

1.4 Thesis Contributions

Because DNA accessibility is a pre-requisite for activity at regulatory ge-
nomic regions and transcription start sites, context-specific chromatin state
plays an important role in the regulation of gene expression. Understand-
ing how DNA sequence specifies local chromatin state can therefore provide
insights into the mechanisms of sequence-directed transcriptional regulation.
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We focused our efforts on a unique dataset of genome-wide chromatin
accessibility profiles of 81 different mouse immune cell types generated using
ATAC-seq by the ImmGen consortium. Unlike most previous efforts to pro-
file chromatin state, this data was generated from isolated cell types rather
than bulk tissue samples or cultured cell lines. It profiles a large number
of different cell types spanning the differentiation trajectory of the immune
system, allowing us to analyze subtle differences in chromatin accessibility
between closely related cells.

To understand the link between DNA sequence and accessibility, we
trained a model that predicts chromatin state from DNA sequence at puta-
tive OCRs. We then extracted the most predictive sequence features used
by the model, which we expect to reflect the biologically important compo-
nents of regulatory sequences. Due to their recent widespread success in the
field of genomics we chose to use a convolutional neural network (CNN) as
the predictive model. We trained a CNN (named AI-TAC) to predict, for a
given OCR, the relative chromatin state for all 81 cell types using only the
DNA sequence at that OCR.

To understand which relevant sequence features are learned by the model
during training, we extracted the PWMs associated with each convolutional
filter in the first layer of AI-TAC and computed several metrics to charac-
terize the importance of each filter. We found that most of the informative
filters matched closely to motifs of known TFs, many of which are known
to have important roles in immune cell differentiation. Lastly, we tried to
understand how combinations of first layer filters are used by the model to
incorporate sequence context and motif cooperativity into its predictions.

The following is an outline of the content in the remaining chapters of
this thesis:

• Chapter 2 details our selected model and the dataset used to train it.
We first describe the steps of generating, processing and normalizing
the ATAC-seq data used for training the model. We then outline, in
detail, the CNN architecture we chose for predicting cell type-specific
chromatin state. The final section shows a number of experiments
validating the predictive performance of the model.

• Chapter 3 focuses on model interpretation with the goal of identifying
predictive sequence features that might help shed light on regulatory
mechanisms of chromatin accessibility. We first describe how we ex-
tract and characterize the first layer filter motifs of AI-TAC, and their
relation to known TF motifs. Next, we show that using our defined
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metrics of filter importance, we can replicate the models performance
with only 1/3 of the first layer filters. Finally, we attempt to extract
the combinatorial logic used by the model that could provide insight
into TF cooperativity in vivo.

• Chapter 4 discusses our findings and proposes some directions for fu-
ture work that may improve on AI-TACs predictive performance and
interpretability.
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Chapter 2

Part I: Model Architecture
and Performance

In this chapter we describe AI-TAC, a CNN model trained on ATAC-seq
data to predict cell type-specific local chromatin state from short DNA se-
quences. Section 2.1 provides an overview of the steps used to generate,
process and normalize the dataset used to optimize AI-TAC. In section 2.2
we describe the details of the different components of AI-TAC, the overall
model architecture, and the model optimization procedure. In section 2.3
we show the results of several experiments designed to test the predictive
performance of AI-TAC. We compare AI-TACs performance on real data
versus several simulated “null” datasets. Additionally, we show the robust-
ness of the model optimization step with respect to the choice of training
and test set split. Finally, we test the ability of AI-TAC to make meaning-
ful predictions on a human cell ATAC-seq dataset not used in training the
model.

2.1 Data

The dataset consists of bulk ATAC-seq assays performed on 81 mouse im-
mune cell types belonging to six different immune lineages: αβT, γδT, B,
lymphoid, myeloid and stem cells.

2.1.1 Data Generation

Each cell type was isolated from genetically identical C57BL/6 mice from the
Jackson Laboratory by one of the ImmGen consortium immunology groups
with flow cytometry using standardized procedures. All library construc-
tion and sequencing was performed at the core ImmGen lab using Illumina
NextSeq 500 instruments and paired-end reads. A more detailed description
of the data generation process can be found in Yoshida et al, 2019[24].
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2.1.2 Processing and Normalization

The ATAC-seq peaks for all 81 cell types were obtained from Yoshida et al,
2019[24]. The processing steps, as described in the paper, are as follows. The
sequenced reads were mapped to the mm10 mouse genome using bowtie, and
non-unique, ChrM mapping and duplicate reads were filtered using samtools
and Picard Tools. Peak calling was performed with MACS2 software using
paired-end reads spanning less than 120 bp. Significant peaks were used to
determine OCRs of length 250 bp centered on each peak summit. OCRs
located in blacklisted genomic regions and ChrM homologous regions were
then filtered out. The “peak height” of each OCR corresponds to the number
of reads mapping to it.

The raw read counts were log2-transformed after adding a pseudocount
of 2, and normalized by quantile normalization across the cell types by Dr.
Sara Mostafavi. For the purposes of our analysis we additionally filtered out
all OCRs on the X and Y chromosomes (because samples came from both
male and female mice) and any OCR sequence with undetermined bases in
the reference. This resulted in a total of 327,927 OCRs where a peak was
identified in at least one of the 81 cell types.

2.2 The AI-TAC Model

2.2.1 Model Architecture

Bayesian optimization of model hyperparameters was performed by Mark
Ma using the skopt package[44] to determine the optimal model architecture
for our problem. We found models with architectures similar to Basset[29]
performed best, and chose a very similar model with three convolutional and
two fully connected hidden layers. The details of AI-TACs architecture are
described below and are shown in figure 2.1.

Each model input is a 251bp OCR sequence transformed via one-hot-
encoding into a 4x251 binary matrix such that each row corresponds to a
nucleotide (A, T, G, C) and each column corresponds to a position along
the sequence, as demonstrated in Figure 2.2. For example, if the sequence
starts with a C, the first column of the one-hot-encoded sequence would
contain a 1 in the 4th row and 0s in rows 1 through 3. We additionally pad
the input sequence with 0’s on either end to a total length of 271 to ensure
every position is properly scanned by the first layer convolutional filters.

The first three hidden layers of the network are composed of convolu-
tional filters. Each filter is a matrix that “scans” the length of the sequence
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Figure 2.1: The architecture of the AI-TAC model.

Figure 2.2: Conversion of sequence into one-hot encoded matrix.

to detect a specific pattern. More formally, for input X of length L with
N input channels (NxL matrix) and a convolutional filter W of width M
(NxM matrix) the output for that filter is a vector of length L−M where
the entry at position i is:

convolution(X)i =
N−1∑
n=0

M−1∑
m=0

WnmXn,i+m + b (2.1)

where b is a bias term that is optimized for each filter.
The first layer of AI-TAC consists of 300 convolutional filters of dimen-

sion 4x19 that scan the input for a particular sequence (i.e. motif). The
second layer is 200 filters with dimensions 300x11 that detects relationships
between each of the first layer filters, and the third layer is 200 filters with
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dimensions 200x7.
The output of each convolutional layer is passed through an activation

function which introduces non-linearity to the model. AI-TAC utilizes the
rectified linear activation function (ReLU) which thresholds values such that
all inputs below 0 are set to 0:

ReLU(x) =

{
x if x ≥ 0

0 if x < 0

The output of each convolutional layer is condensed using the maxpool-
ing operation, which computes the maximum value within a contiguous win-
dow of the convolutional layer output. For a maxpool operator of width w
and stride w (equal to it’s width) applied to a sequence X, the output at
position i is computed as:

maxpool(X)i = max{Xwi, Xwi+1, ..., Xwi+w} (2.2)

The maxpool layer reduces the intermediate output of the layer which
reduces the number of parameters in the next layer making the model op-
timization more robust. It also allows for more variability in the spacing of
input features thus accounting for any biological variation in motif spacing.
The convolutional layers of AI-TAC have maxpooling of width 3, 4, and 4,
respectively, with stride equal to the width of the maxpool operator.

Next, we applied batch normalization, which enables faster model opti-
mization and acts as an implicit regularizer of the model weights by nor-
malizing the outputs of hidden layers to reduce their variance [27]. Each
activation unit fed into the batch normalization layer is mapped to a corre-
sponding output Yi via the following equation:

Yi =
Xi − E[Xi]√
V ar[Xi] + ε

· γ + β (2.3)

E[Xi] and V ar[Xi] are the mean and variance, respectively, of activa-
tion Xi over a training mini-batch. During model evaluation (as opposed
to model training) these values get substituted with the overall mean and
variance computed over the training set. Parameters γ and β are learned
during the training phase.

The output of the convolutional layers is then fed into a traditional fully
connected network with 2 hidden layers. As the name implies, in a fully
connected layer each input neuron is connected to each output neuron via a
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weight. The output vector Y of a fully connected layer consists of neurons
Yj computed in the following way:

Yj =
I∑

i=i

wijXi (2.4)

where X is the layer input. AI-TAC contains two hidden fully connected
layers each with 1000 output units. The second of these layers maps to the
model’s final 81-unit output(corresponding to each of the 81 cell types) via
a linear transformation.

2.2.2 Model Training

The model was trained by minimizing the loss function below with respect to
the model weights using the Adam optimizer [30]. We chose cosine distance
as the objective function:

f(x) = 1− Ŷ · Y
|Ŷ ||Y |

(2.5)

This loss maximizes the Pearson correlation between the predicted and
observed chromatin activity state across the 81 cell types for the training
set OCRs. We chose this loss to emphasize accurate prediction of OCRs
with differential activity profiles across the cell types, to aid in identify-
ing sequence features correlated with differential activity during the model
interpretation stage.

AI-TAC was implemented in PyTorch version 0.4.0. The training was
performed using the Adam optimizer [30] for 10 epochs with a learning rate
of 0.001 and a mini-batch size of 100. As an additional form of regularization
we implement drop-out of 3% on the two hidden fully connected layers.
Drop-out sets a random portion (in our case 3%) of the input neurons to
zero for each training sample, which helps prevent over-fitting of the model
to the training set [25].

2.3 Model Performance

2.3.1 Comparing to Randomized Null

We first trained AI-TAC on a randomly selected subset of OCRs consisting
of 90% of the 327,927 OCRs in our dataset. We benchmarked the perfor-
mance of AI-TAC on the remaining 10% of our dataset against simulated
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Figure 2.3: Performance of the model (measured by Pearson correlation)
on real and shuffled mouse ATAC-seq data. (a) randomization by shuffling
the sequences, (b) by permuting the chromatin accessibility profiles, and (c)
by shuffling the assignment of each OCR to its accessibility profile

“null” datasets to ensure it had learned some meaningful predictive features.
We compared AI-TAC to three different models, each trained on data ran-
domized in one of the following ways:

• Randomly shuffled 251 base pair input sequences

• Randomly shuffled ATAC-seq activity vectors of length 81

• Randomly permuted order of input sequence and output vectors in the
dataset

Figure 2.7 shows the correlations between model predictions and ATAC-
seq derived activity values for each of the test set samples, comparing the
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AI-TAC results to each of the three “null” models. We observed that the
average correlation of the “null” model predictions is close to zero, as ex-
pected since there shouldn’t be any detectable patterns in the randomized
data. Notably, the shuffled sequence model has the highest average cor-
relation compared to the other “null” models, reflecting the fact that GC
content on its own is somewhat predictive of chromatin state because CpG
islands are generally ubiquitously accessible[11]. In contrast, the average AI-
TAC prediction correlation is 0.32, indicating that there is real signal and
structure in the dataset that the model is able to exploit to make predictions.

2.3.2 10x10 Cross-validation

To ensure the results we obtained with AI-TAC were not highly sensitive
to training set selection and model initialization, we performed a 10-fold
cross-validation of the entire dataset a total of 10 times, thus obtaining 100
different models. In this way, each of the 327,927 OCRs was considered as
a test OCR by ten different trained models.

We observed very stable test set distributions across all the models (Fig-
ure 2.4a). Additionally, our results show that OCRs that were well predicted
had the most stable predictions across the 10x10 cross-validation trials (Fig-
ure 2.4b), indicating that the model is able to consistently learn highly pre-
dictive features for that subset of OCRs regardless of training set selection.
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Figure 2.4: (a) The prediction correlation for each OCR in the dataset when
it was part of the test set, for all 10 cross-validation trial. (b) The mean test
prediction correlation for each OCR across 10 independently trained models
on the x-axis versus the range of correlation values on the y-axis.
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2.3.3 Chromosome Leave-out

Enhancers regulating the activity of the same gene have been shown to have
phenotypic redundancy[37]. To ensure our results were not overly optimistic
due to the presence of highly similar OCR sequences (at functionally redun-
dant enhacers) in both the training and test set we performed a chromosome
leave-out validation experiment. We tested the robustness of our model by
leaving each of the 19 mouse autosomes as a test set and training the model
on the remainder of the data. The results in figure 2.5 show that all 19 of
these models have very similar test set prediction correlation distributions
to AI-TAC, indicating that our model is not significantly impacted by the
choice of training and test sets.
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Figure 2.5: Boxplot showing the test performance of 19 separate models,
trained by leaving each of the 19 autosomes out once.
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2.3.4 Predictions Vary by OCR Type

We were further interested in characterizing the differences between OCRs
that were predicted well versus those that were predicted poorly. When we
looked at AI-TACs prediction accuracy versus the variance of the ATAC-
seq signal across the 81 cell types at each OCR, we observed that the highly
well-predicted peaks were most likely to also have high variance (Figure 2.6).
This is unsurprising considering the Pearson correlation loss used to optimize
AI-TAC emphasizes the accurate prediction of high-variance OCRs.
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Figure 2.6: Variance of peak heights of each OCR on x-axis versus AI-TAC
prediction accuracy on the y-axis.

2.3.5 Model Performance on Human Data

There is a high degree of similarity between mouse and human regulatory
sequences, and previous work has shown that deep learning models can
generalize from mouse to human data[8]. We therefore decided to validate
the performance of AI-TAC on an ATAC-seq dataset of human primary
immune cell types from Corces et al, 2016[9].

Data processing and normalization steps identical to those described for
the mouse data were performed by Caleb Lareau, providing us with 539,611
OCRs of 250bp each with chromatin activity values for 18 different cell
types. For eight of the human immune cell types for which ATAC-seq data
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was available closely matching equivalents were present in our mouse dataset
(Table 2.1). We compared the predictions of the AI-TAC model trained on
mouse data to the observed chromatin activity in the corresponding human
cell type, averaging over the prediction values when appropriate to obtain
lineage-level predictions.

Figure 2.7 shows the results on real data versus three different types of
randomized data, analogous to the test we performed on the mouse data:

• Randomly shuffled 251 base pair input sequences

• Randomly shuffled ATAC-seq activity vectors of length 81

• Randomly permuted order of input sequence and output vectors in the
dataset

Despite never seeing human data in it’s training set, the average cor-
relation between AI-TACs predictions and the measured peak heights over
the OCRs in the human dataset is 0.22, much higher than the models per-
formance on randomized data. The fact that AI-TAC generalizes enough
to make meaningful predictions on another species indicates that it learned
real biological signal in our dataset.

2.4 Summary

In summary, we trained a CNN with 3 convolutional and 2 fully connected
layers to predict relative chromatin state at putative OCRs for 81 cell types
simultaneously on the basis of 251bp DNA sequences. The model was
trained using ATAC-seq data generated from mouse immune cells from six
different lineages. The model was tested on a held-out set of OCRs from
our mouse dataset, and compared to simulated “null” data. We also con-
firmed that the model performance is not sensitive to training set selection,
by doing cross-validation and chromosome leave-out experiments. Finally,
we showed that AI-TAC generalizes to human data by testing it on a human
ATAC-seq dataset of closely matching immune cell types.
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Figure 2.7: Performance of model trained on mouse ATAC-seq data on
human DNA sequences. Performance is measured by Pearson correlation
between model predictions and ATAC-seq data for the closest corresponding
cell type. Results on real data are compared to data randomized in three
ways: (a) randomization by shuffling the sequences, (b) by permutting the
chromatin accessibility profiles, and (c) by shuffling the assignment of each
OCR to its accessibility profile
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Mouse cell types Human cell types

B.Fo.Sp B

B.GC.CB.Sp B

B.GC.CC.Sp B

B.mem.Sp B

B.MZ.Sp B

B.PB.Sp B

B.Sp B

T.4.Nve.Fem.Sp CD4

T.4.Nve.Sp CD4

Treg.4.25hi.Sp CD4

NKT.Sp CD4

T.8.Nve.Sp CD8

T8.Tcm.LCMV.d180.Sp CD8

T8.Tem.LCMV.d180.Sp CD8

T8.TN.P14.Sp CD8

LTHSC.34-.BM HSC

LTHSC.34+.BM HSC

DC.4+.Sp mDC

DC.8+.Sp mDC

Mo.6C-II-.Bl Mono

Mo.6C+II-.Bl Mono

NK.27-11b+.BM NK

NK.27-11b+.Sp NK

NK.27+11b-.BM NK

NK.27+11b-.Sp NK

NK.27+11b+.BM NK

NK.27+11b+.Sp NK

DC.pDC.Sp pDC

Table 2.1: The human immune cell types measured by Corces et al. [9],
and their mouse counterparts. All mouse cell populations that map onto
the same human cell type were averaged in comparative analyses.
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Chapter 3

Part II: Model Interpretation

Given that we’ve shown that AI-TAC learned relevant sequence features that
are predictive of chromatin state, we are interested in understanding what
those features are. Identifying important motifs and combinations of motifs
that are correlated with chromatin state could provide important biological
insights into the mechanism of cell-specific transcriptional regulation.

Section 3.1 describes how we extract PWMs learned by the first layer
convolutional filters of AI-TAC and compare them to known mouse TF
motifs. In section 3.2 we provide the details of computing filter information
content, reproducibility and influence values, which characterize the relative
importance and complexity of the recovered PWMs. We then performed
experiments quantifying the degradation in the models performance when
the first layer filters are limited to subsets of the most important motifs
defined via the above metrics, the results of which are shown in section 3.3.
Finally, in section 3.4 we show our attempts to decipher the combinatorial
logic used by AI-TAC to make its predictions using two different ways: by
examining the second layer convolutional filter weights, and by computing
filter pair influence values.

3.1 Interpreting AI-TAC with First Layer Filters

To understand which sequence features are used by the model to make pre-
dictions we examine the first convolutional layer. The first layer consists of
300 filters, each 19 units long, that scan the input sequence and learn to
recognize a specific motif. These were analyzed by converting them to po-
sition weight matrices (PWMs). To do so, for each first layer filter, we first
identified all 19bp sequences that activate the filter by at least 1/2 of the
maximum activation for that filter across all 51,732 well-predicted (Pearson
correlation greater than 0.75) OCRs [29]. Next, we constructed a position
frequency matrix based on the prevalence of each of nucleotide along the
19bp long sequences, and finally we converted the position frequency matrix
to a PWM by using a background uniform nucleotide frequency of 0.25. This
analysis yielded 300 PWMs, each capturing the motif that is detected by a
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3.2. Filter Properties

Pax5

Pax5

Sfpi1

Sfpi1

Figure 3.1: PWMs corresponding to 4 different convolutional filters in the
first layer of AI-TAC. The filter motifs are shown aligned to known tran-
scription factors in the CIS-BP database

first layer filter. The number of sequences comprising each of the PWMs is
shown in figure 3.2, plotted against the IC of each filter. The (log scaled)
number of sequences in each PWM is inversely proportional to the IC of
each filter, which is unsurprising as we expect low IC motifs to occur more
frequently by chance within the DNA sequence.

These PWMs were then compared to known mouse transcription factor
motifs in the CIS-BP Mus musculus database [50] using the Tomtom motif
comparison tool [20]. About a third of the first layer filters have a significant
match to known TF motifs. Figure 3.1 shows four examples of filters that
closely matched to known mouse TF binding motifs Pax5 and Sfpi1/PU.1.
In the case of these TFs (and many others) the model learned both the
forward and reverse compliment of the motif.

3.2 Filter Properties

To help characterize and prioritize the first layer filters of AI-TAC we com-
puted the following metrics: the information content of each filter motif,
the reproducibility of each filter across multiple training iterations of the
model, and the influence of each filter on the model predictions. Appendix
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Figure 3.2: The number of sequences comprising each first layer filter PWM
(log-scaled) versus the IC of each PWM, color coded by the log of the filter
influence value.

A lists these metrics for each of the 300 filters, and the details of how they
are obtained are described in the remainder of this section.

3.2.1 Information Content

We computed the information content of each motif using the following
formula:

IC =
∑
i,j

pij log2(pij)−
∑
i,j

bj log2(bj) (3.1)

Where pi,j is the probability of observing nucleotide j at position i based
on the observed frequencies and bj is the background frequency of nucleotide
j (set to 0.25 in our case).
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3.2. Filter Properties

3.2.2 Reproducibility

To understand how sensitive the convergence of the first layer filters is to
the random training data split and model weight initializations we created
a reproducibility metric. We trained 10 additional models using different
random 90% subsets of the ATAC-seq dataset, then extracted the 300 filter
PWMs from all 10 models. We measured the similarity between the filters of
AI-TAC and those from each of the other models using the Tomtom PWM
comparison tool[20]. We then defined a reproducibility score for each of the
AI-TAC filter motifs as the number of models with at least one matching
motif using an FDR q-value cut-off of 0.05 on the Tomtom results.

About a third of the filters are highly consistent between different train-
ing iterations of the model (Figure 3.3). The highly reproducible filters are
much more likely to match a known TF binding motif than less reproducible
ones. Additionally, the high information content filters are more likely to be
reproducible, perhaps because obtaining a high IC motif is less likely during
the optimization stage and therefore these are learned only if they are highly
predictive.

3.2.3 Influence

The influence of each filter was computed by effectively removing the filter
from AI-TAC and quantifying the impact on the models prediction. Specif-
ically, we replaced all activation values for the given filter with its average
activation value across all samples in the batch, then fed the output through
the remaining layers of the model to obtain the altered prediction vector[29].
The overall influence value for a given filter was computed as the average
(across OCRs) of the squared difference between the correlation in prediction
of accessibility profiles (loss) of the altered and un-altered model.

Figure 3.4 shows the importance of each filter as a function of the infor-
mation content of its PWM. Notably, high IC filters tend to have a bigger
impact on model predictions. This is likely for the same reason that repro-
ducibility values correlate with IC - these complex motifs are more difficult
to learn, and therefore are learned by the model only if they are highly
predictive of chromatin state.

Additionally, there is a strong correlation between filter influence values
and whether or not the filter motif matches to a known mouse TF motif,
indicating that for the most part motifs that are strongly correlated with
regulatory activity have already been characterized. Reassuringly, many
of the high influence filters correspond to motifs of known pioneer factors
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Figure 3.3: The reproducibility value of each AI-TAC first layer filter across
10 independent training iterations on the x-axis versus the information con-
tent of each filter on the y-axis. Each filter is color-coded by whether or
not it matched a TF binding motif in the CIS-BP database with Tomtom
q-value less than 0.05.

that are responsible for establishing chromatin accessibility, for example
Sfpi1(PU.1), Pax5 and Cebp. The model also recovered the high information
content motif of Ctcf, which plays an important role in the function of
insulators.

To understand the cell type-specific impact of each filter we also com-
puted an influence profile per cell population, as the average (across OCRs)
of the squared difference between the original and modified prediction values
for each output neuron (corresponding to a given cell population). We addi-
tionally computed a signed version of the influence profile, shown in Figure
3.5, by taking the difference between altered and un-altered predictions for
each neuron, which shows whether the presence of each filter is predictive
of higher or lower chromatin accessibility in each cell population.

All influence values were computed using 51,732 OCRs for which the
AI-TAC prediction has greater than 0.75 correlation with the ground-truth
chromatin accessibility. To ensure that including well-predicted OCRs from
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255 Sfpi1//Spib

23 Ctcf

218 Pouf2f

286 Sfpi1//Spib

133 Sfip1//Spib
11 Ets1

260 Ebf1

34 Cebp

85 Zkscan1

112 Tcf3

174 Cebp

15 Runx
10 Runx

190 Pou2f2

165 Irf1238 Nr1d1

78 Tcf3//Id3

224 Irf1//Stat2

276 Sfpi1/Sfpib
94 Pu.1

257 Pax5

252 Ets

217 Pax5

205 Bcl11a//Bcl11b

35 Nfix

288 Emoes//Tbx21

220 Nr2f6
242 Sp//Klf

Figure 3.4: Information content (x-axis) versus the log of influence (y-axis)
for all 300 first layer filters. Filters with PWMs matching to known TF
motifs in the CIS-BP Mus musculus database are indicated in orange.

the training set would not bias our results, we compared the influence values
obtained from well-predicted test and training set OCRs. The influence
values computed on these two sets were strongly correlated. Additionally,
the filter PWMs from the same model obtained from the test versus training
set OCRs were virtually identical, with a Tomtom q-value of 2.9x10−27 or
less for all but one pair of test set and training set derived PWMs.

The per-cell type influence values shown in Figure 3.5 indicate that some
TF motifs have highly cell type specific predictive value, while others have
more general importance across all lineages. There are many instances
where the importance placed by AI-TAC on certain TF motifs recapitu-
lates known biology. For example, filters corresponding to Pax5 and Ebf1,
which are necessary for the commitment to and maintenance of the B-cell
lineage [33, 36], have high influence values exclusively among the B-cells.
The influence values of filters matching the motif recognized by both Eomes
and Tbx21(T-bet) proteins recapitulates their importance in establishing
the NK and CD8+ T-cell lineages[26, 51]. The Runx and Ets TF families
play an important role in many different stages of haematopoiesis and are
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3.2. Filter Properties

expressed across the immune cell lineages [15, 49], which is reflected in the
importance of their motifs in Figure 3.5. The Sfpi1/PU.1 motif has a high
level of redundancy in the model and the highest influence overall, and has
particularly high influence values for the stem, B-cell and myeloid lineages.
Sfpi1 is responsible for determining immune cell fate, with high concentra-
tions promoting myeloid differentiation while low concentrations promote
B-cell differentiation [12]. Interestingly, the model produces high Sfpi1 in-
fluence values for both the B-cell and myeloid lineages, even though it is
expected to be highly expressed only in the myeloid cells.
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Figure 3.5: Cell type-specific log2-scaled influence values for the 99 repro-
ducible filters found in at least 8 out of 10 different models.
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Figure 3.6: Model performance on test set using subsets of first layer motifs.
In blue are experiments with randomly selected filter subsets, repeated 100
times for subsets of size 10 to 300 filters (in increments of 10). In orange,
results for manually defined filter subsets selected based on filter properties:
reproducible8, reproducible9. and reproducible10 correspond to all filters
with reproducibility metric of at least 8, 9, or 10, respectively; annotated -
all filters with CIS-BP TF motif match with q-value 0.05 or less; influence
- 98 highest influence filters.

Because we expect the reproducible filters to be the most critical for
good model performance, we decided to test how well the model predictions
can be recovered with only the 99 filters found in 8 out of 10 additional
models. We performed the experiment by removing all first layer weights
that do not belong to the set of 99 reproducible filters, as well as all second
layer weights corresponding to these filters. The first layer weights are then
frozen, and the model is fine-tuned (with an adjusted learning rate of 0.0001)
on the training set OCRs. The fine-tuning was performed for 10 additional
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3.4. Detecting TF Cooperativity with AI-TAC

epochs, and the model with the best performance on the validation set was
retained (typically found after 2-5 epochs).

The model used for these experiments was obtained by copying AI-TAC
first layer weights into a randomly initialized model, freezing the first layer
filters, and training the model for 10 epochs. The best model, obtained after
3 epochs, was selected based on performance on a validation set. This yielded
a model with identical filters to AI-TAC and very similar performance on
the test set OCRs.

As a null control, we compared these results to models for which a ran-
dom subset of first layer filters was retained. For subsets of size 10 to 300
filters (in increments of 10) we repeated the fine-tuning procedure 100 times
with random subsets selected (results in Figure 3.6). Additionally, we tested
the model performance when only including filters reproduced in 9 out of
10 trials (82 filters), 10 out of 10 trials (70 filters), all filters matching a
CIS-BP TF motif with a Tomtom q-value less than 0.05 (61 filters), and
filters with influence greater than 0.0001 (98 filters). We found all of these
subsets were sufficient to obtain average performance almost as high as the
unaltered model, in contrast to the randomly selected filter sets. Subsets
selected by reproducibility, influence and annotation status all have very
similar performance, which is unsurprising since those metrics are highly
correlated, and produced very similar filter subsets.

Figure 3.7 shows the performance of the 99 reproducible filter model at
the OCR level. The correlations between the truncated model predictions
and observed OCR activity profiles are virtually unchanged compared to the
predictions of the full AI-TAC model.

The fact that AI-TACs predictive power can be almost entirely recovered
with only a third of the first layer filters indicates that the majority of these
filters are not meaningful feature detectors. This is consistent with previous
findings that the number of first layer filters required for a CNN to learn the
entire set of relevant motifs for a particular classification problem is larger
than the set itself[32]. This necessary over-parameterization of the network
is likely due to the difficulty of converging to a meaningful PWM from a
random filter initialization during the model optimization stage.

3.4 Detecting TF Cooperativity with AI-TAC

The model predictions do not depend on the detection of individual motifs
alone, but rather on patterns of motif combinations and their surrounding
sequence context. The way AI-TAC models these relationships between
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Figure 3.7: Correlations between predictions and ground truth peak heights
for test set OCRs for the full AI-TAC model versus the model with only the
99 most reproducible filters.

sequence features should reflect, to some degree, the underlying biological
mechanisms that drive cell type-specific chromatin accessibility patterns.
We attempted to understand this combinatorial logic of the model in two
ways: by analyzing the weights of the second layer convolutional filters and
by computing combined influence values for select filter pairs.

3.4.1 Second Layer Filters

Because higher order relationships between the first layer motifs are encoded
in the deeper layers of the network, an obvious first attempt at identifying
important filter combinations is to look for combinations of motifs assembled
by the second layer convolutional filters[5]. Due to the maxpooling applied to
the first layer output, constructing clear motifs from second layer activations
was not possible and we instead examined the second layer filter weights
directly.
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3.4. Detecting TF Cooperativity with AI-TAC

(a)

(b) (c)

(d) (e)

Figure 3.8: (a) Maximum weights between all reproducible
first layer filters belonging to a cluster and a subset of second layer filters.
Second layer filters were selected based on a weight threshold of 0.7 for
at least one first layer motif. For a few examples, we visualized second
layer filter weights for the most heavily weighted first layer motifs along
with the corresponding PWMs. (b-c) Two instances of a second layer motif
aggregating similar first layer motifs. (d-e) Two examples of a second layer
filter recognizing reverse compliments first layer motifs. 38



3.4. Detecting TF Cooperativity with AI-TAC

We found that in a large number of cases the second layer filters recog-
nized similar (Figures 3.8b, 3.8c) or reverse complement (Figures 3.8d, 3.8e)
first layer motifs. This indicates that the second layer convolutional filters
are assembling “cleaner” versions of first layer motifs rather than learning
the combinatorial logic between them. Figure 3.8a shows the magnitude
of the weights placed on each first layer convolutional filter by each second
layer filter, with the first layer PWMs clustered by similarity. Clustering was
performed by Ricardo Ramirez using RSAT[7]; more details can be found in
Maslova et al, 2019 [34].

It shows on a more global scale the trend of second layer filters agglomer-
ating similar motifs from the first layer. This is consistent with the findings
of Koo and Eddy, 2019[32] for convolutional filters with smaller maxpool-
ing windows. Their study suggests that increasing the maxpooling size in
the first layer can force the first layer weights to converge to more com-
plete motifs during training. The second layer filters then correspond to the
interactions between these motifs.

3.4.2 Filter Pair Influence

To see whether AI-TAC was able to detect any instances of cooperative ac-
tivity between TFs, we looked for evidence of non-additive effects on the
model predictions when particular motif pairs are present in the input se-
quence. To do this, we computed filter pair influence values in a similar way
as single filters, by removing both filters from the first layer of the model
at once and quantifying the change in AI-TACs predictions. To make this
task computationally tractable we selected the 40 most important filters by
influence and reproducibility metrics and computed pair influence values for
all 1600 possible pairs.

Figure 3.9 shows these pair influence values against the sum of individual
influence values for the filters in the pair. For filter pairs that correspond
to TFs that act independently, we expect the effect of removing both filters
at once to be equal to the sum of their individual influence values (addi-
tive effects). However, if both filters are required to accurately predict the
chromatin activity profile of an OCR, as would be expected for TFs that
cooperate in vivo, removing either filter individually should produce a sim-
ilar impact as removing both filters at once. In cases where two different
TFs have redundant function, and thus the presence of either motif alone
is sufficient to accurately predict the OCR activity profile, the impact of
removing both TF filters will be greater than the sum of their individual
filter values.
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Figure 3.9: Sum of individual filter influence values of given filter pair on
the x-axis versus the computed influence value when removing both filters
in the pair from the model simultaneously (y-axis).

As seen in Figure 3.9, filter pairs composed of highly similar motifs
have, for the most part, higher than expected pair influence values. It’s
likely that these similar filters serve a redundant purpose in the model,
recognizing the same motifs within the input sequence, and therefore their
individual influence values are underestimated. The more interesting cases
are the highly dissimilar pairs that have an unexpectedly high pair influence
values, as these may be indicative of a biological redundancy rather than a
technical one. There are six such filter pairs (corresponding to four different
TF combinations) listed in Table 3.1, which are interesting candidates for
further investigation.

There are also several filter pairs, listed in Table 3.2 that have lower
than expected pair influence values, implying that the detection of both
motifs is necessary for a correct model prediction and perhaps indicative
of cooperativity between the TFs. Our results indicate that the model is
detecting possible cooperativity between pioneer factors Sfpi1 and Cebp and
Tcf3, a TF critical for normal B and T-cell development[10].

The efficacy of this method for determining combinatorial logic within
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filter174 - Cebp filter255 - Sfpi1

filter133 - Sfpi1 filter174 - Cebp

filter133 - Sfpi1 filter165 - Irf1

filter10 - Runx filter11 - Ets1

filter15 - Runx filter11 - Ets1

filter11 - Ets1 filter78 - Tcf3/Id3

Table 3.1: Filter pairs with higher than expected pair influence values.

filter255 - Sfpi1 filter78 - Tcf3/Id3

filter255 - Sfpi1 filter11 - Tcf3

filter255 - Sfpi1 filter93 - Zeb1/Tcf3/Id3

filter174 - Cebp filter78 - Tcf3/Id3

Table 3.2: Filter pairs with lower than expected pair influence values.

the model is likely hampered by the redundancy present among the first
layer motifs of AI-TAC. This approach may prove more fruitful if applied
to a CNN with unique PWMs in the first layer, for example a model that is
initialized with frozen PWMs of known TF motifs such as OrbWeaver[3].

3.5 Summary

In conclusion, we extracted the PWMs of all 300 first layer filters of AI-TAC
to understand which sequence features are informative of local chromatin
accessibility. We compared these filters to a database of known motifs of
mouse TFs, and computed metrics of IC, reproducibility and influence for
each filter. A table containing the above information for all 300 first layer
filters can be found in Appendix A.

We found that about a third of the filter PWMs matched closely to
known TF motifs, and this subset also has high filter reproducibility and
influence values. We then performed an experiment to see how much of
the model accuracy would be retained when using only the top third of
filters determined with our importance metrics. We found that the model
performance remains almost unchanged, and is considerably higher than
performance for a randomly selected subset of filters.

Finally, we looked for evidence of TF cooperativity in our model. We
examined the second convolutional layer of AI-TAC to determine which com-
binations of first layer filters are weighted highly when detected together.
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We found that the second layer filters tend to group similar or reverse com-
plement first layer motifs. We then computed influence values for selected
pairs of first layer filters, and found several pairs that may be of interest for
further investigation.
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Chapter 4

Conclusions

4.1 Summary

We trained a CNN model using ATAC-seq data to predict chromatin accessi-
bility across a large set of related immune cell types from sequence alone. We
used Pearson correlation as the loss function for training our model, which
prioritized the accurate prediction of regions with variable activity across
different cell populations. Based on comparisons of model predictions on
held-out test examples and human DNA sequences to results on simulated
“null” data, we concluded that the model learned some biologically mean-
ingful features. We additionally showed that the predictive performance of
AI-TAC is stable with regards to the choice of training and test set splits.

The second part of the thesis was dedicated to extracting predictive se-
quence features from the model. We first identified the PWMs learned by
the first layer convolutional filters of AI-TAC and found that many of them
closely resemble binding motifs of known TFs. We additionally assigned two
metrics of importance to every filter: influence and reproducibility. Influence
values correspond to the impact of removing the filter on the model predic-
tions, while reproducibility is the number of independent training iterations
in which the filter was recovered. We validated these metrics by testing the
model while using just a third of the most important filters and showing that
the performance is almost as good as using the unaltered AI-TAC model.

In the last part of this thesis we attempted to understand the combina-
torial logic within AI-TAC that may be representative of TF interactions in
vivo. We tried two different approaches for this task: examining the second
layer convolutional filter weights to understand how the model combines the
first layer filters, and computing influence values for selected pairs of filters.
The latter analysis yielded a handful of candidate motif pairs for further
investigation. However, a full understanding of the combinatorial effects of
motifs remains a challenge.
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4.2 Discussion

Notably, the vast majority of the filters identified in this study with high
influence and reproducibility values matched closely to known mouse TF
motifs. In addition, the cell type-specific influence values of these filters
were largely in agreement with the known roles of the corresponding TFs
within immune cell differentiation. While it’s comforting that our results
coincide closely with prior biological knowledge, the question arises of why
we are not seeing many novel motifs in our model. One possibility is that
the motifs learned by both AI-TAC and through the many individual bio-
logical experiments aimed at understanding immune cell differentiation rep-
resent the lowest hanging fruit of relevant TFs - i.e. the most prevalent
and statistically significant motif instances within the data. Alternatively,
it’s possible that the vast majority of TFs that are relevant to chromatin
state within immune cells have already been characterized by the immunol-
ogy field. Fully explaining cell type specific chromatin state would then
require understanding the interactions between these TFs and the role of
other epigenetic mechanisms in chromatin accessibility.

There are a number of epigenetic mechanisms that impact chromatin
state and are not directly reflected in the DNA code that may limit how
well the model can predict chromatin state from short, local DNA sequence
alone. These mechanisms include:

• DNA methylation within regulatory sequences, which can affect bind-
ing affinity between TFs and their motifs[45]

• Modifications of histones within nucleosomes which can alter nucleo-
some stability[31]

• Indirect binding of important TFs at regulatory sites via protein-
protein interactions with other TFs [45]

• Removal of nucleosomes via interaction with distal regulatory sites[31]

The results of repeated cross-validation experiments, depicted in Figure
2.4b, do validate the notion that for some OCR the model fails to make
consistently good predictions. Although a subset of OCRs are uniformly
very well-predicted across different training iterations of the model, many
OCRs were on average predicted poorly. This can be partially explained
in terms of the variance of chromatin state at each OCR - we can expect
that high prediction correlation values would be more difficult to obtain for
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very uniform activity vectors. We do, in fact, observe that peak variance is
correlated with the prediction accuracy of AI-TAC (Figure 2.6). However,
it is also likely that some of the epigenetic mechanisms listed above are
impacting chromatin accessibility in ways that are undetectable to AI-TAC.

Cooperative interaction between TFs may be the other key to under-
standing how chromatin accessibility is controlled with high precision dur-
ing differentiation. We already noted some of the potential technical reasons
why our approaches to understanding TF cooperativity did not yield many
candidate TF interactions, namely that our model architecture allowed for
large amounts of redundancy among the first layer filters as well as dispersed
representations of motifs. However, there may be a low amount of evidence
for TF cooperativity in our dataset for biological reasons. It’s possible that
chromatin accessibility within this biological system can be largely predicted
based on motifs of lineage-specific pioneer factors and the additive effects
of differentially-expressed TFs that contribute to accessibility via passive
competition with nucleosomes for DNA binding. Improved methods for ex-
tracting the combinatorial logic used by the model would help clarify these
questions.

4.3 Future Work

Understanding how various epigenetic mechanisms contribute to chromatin
state can be explored by integrating additional genomic data within a CNN
framework. For example, DNA methylation and histone modification as-
says can be added to the sequence information to provide better predic-
tions of chromatin accessibility. The role of long-range interactions between
regulatory elements can be examined by incorporating data from a DNA
conformation assay such as Hi-C.

The analysis of TF cooperativity can be improved by adjusting the ar-
chitecture of the model to make our approaches more informative. For ex-
ample, the maxpooling after the first convolutional layer can be increased to
make the second layer filters more interpretable. Additionally, eliminating
redundancies within the first convolutional layer would make the influence
values for both individual filters and filter pairs more informative. Finally,
increasing the resolution of the model output, for example by changing it
to per-base pair predictions of ATAC-seq read depth, could provide bet-
ter information about the impact of the spatial organization of motifs on
chromatin state.
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Appendix A

Filter motif information

Properties of all 300 first layer filters of AI-TAC. The columns correspond
to:

• Influence - overall filter influence

• IC - information content of the filter PWM

• Reprod. - reproducibility, i.e. the number of runs in which this filter
was recovered

• Top TF matches - TFs corresponding to best matching motif in the
CIS-BP database

,

Filter Influence IC Reprod. Top TF Matches
filter255 0.0357675 12.81011043 10 Sfpi1/ Spib/ Spib/

Bcl11a/ Bcl11b/ Etv2/
Ets2/ Erg/ Erf/ ENS-
MUSG00000044690

filter34 0.010975358 9.823882667 10 Cebpb/ Cebpe/ Cebpa/
Nfil3/ Cebpg/ Cebpd/
Dbp/ Tef/ Hlf/ Atf5

filter11 0.009727289 12.43567913 10 Etv2/ Ets2/
Ets1/ Erf/ ENS-
MUSG00000044690/
Fev/ Etv2/ Ets2/ Erg/
Erf

filter133 0.008568606 13.17366462 10 Sfpi1/ Spib/ Spib/
Bcl11a/ Bcl11b/ Irf1/
Etv2/ Ets2/ Ets1/ Erf

filter174 0.008169892 11.09285091 10 Cebpe/ Cebpb/ Cebpa/
Cebpg/ Hlf/ Cebpd/
Nfil3
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filter112 0.007724161 10.6590297 10 Myf5/ Myod1/ Ascl2/
Ascl1/ Myf5/ Myog/
Tcf12/ Tcf3/ Tal1/
Lyl1

filter15 0.005275883 11.93004972 10 Runx2/ Runx3/
Runx1/ Runx2/
Runx3/ Runx2/ Runx3

filter10 0.005030511 11.94800097 10 Runx1/ Runx2/
Runx3/ Runx2/
Runx3/ Runx2/ Runx3

filter78 0.004063911 10.53256981 10 Id3/ Id4/ Id1/ Snai2/
Zeb1/ Myf5/ Myod1/
Mesp2/ Mesp1/ Tcf4

filter260 0.003942707 13.54372185 10 nan
filter238 0.00301885 10.78727984 10 Rorc/ Rorb/ Rarb/

Esr1/ Esr2/ Rxrb/
Nr2f6/ Rxrg/ Nr2f2/
Esrrb

filter167 0.002844589 13.44976933 10 Pax9/ Pax5/ Pax8/
Pax1/ Pax9/ Pax5/
Pax8/ Pax1/ Pax9/
Pax5

filter217 0.002654829 12.57158572 10 Pax9/ Pax5/ Pax8/
Pax1/ Pax9/ Pax5/
Pax8/ Pax1/ Pax9/
Pax5

filter292 0.002608087 13.3200093 10 Smarcc2/ Smarcc1/
Fosb/ Fos/ Batf3/
Batf/ Fosb/ Fos/
Bach1/ Bach2

filter165 0.002315825 14.4805664 10 Irf1/ Bcl11a/ Bcl11b/
Stat2/ Prdm1

filter218 0.002303334 15.35124635 10 Tbpl2
filter190 0.002254576 14.3090253 10 Tbpl2
filter245 0.002075286 6.377445222 1
filter121 0.002055486 10.13494298 0
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filter252 0.001935959 12.22508784 10 Etv2/ Ets2/
Ets1/ Erf/ ENS-
MUSG00000044690/
Fev/ Etv2/ Ets2/ Erg/
Erf

filter40 0.001902964 8.250938104 10
filter220 0.001194611 10.29211886 10 Esr1/ Esr2/ Rorc/

Rorb/ Rarb/ Rxrb/
Nr2f6/ Rxrg/ Nr2f2/
Nr2c2

filter295 0.001191121 3.963877444 2
filter271 0.001167049
filter166 0.001148039 13.52171258 10 Lef1/ Tcf7l2
filter288 0.001144482 10.343384 10 Tbx1/ Tbx10/ Tbx20/

Tbx21/ Eomes/ Mga/
Tbx5/ Tbx4/ Tbx21/
Tbr1

filter68 0.001073696 10.74340634 10 Nr1d1/ Nr1d2/ Rorc/
Rorc/ Rorb/ Pparg/
Ppard/ Ppara/ Pparg/
Ppard

filter57 0.00104311 5.444640633 1
filter242 0.000939029 14.6802471 10 Sp2/ Sp3/ Sp6/ Sp8/

Sp7/ Sp9/ Sp5/ Sp2/
Sp3/ Sp6

filter93 0.000936151 10.65612167 10 Id3/ Id4/ Id1/ Zeb1/
Snai2/ Mesp2/ Mesp1/
Tcf4/ Figla/ Atoh8

filter279 0.000878933 11.1171853 10 Klf6/ Klf5/ Klf3/ Klf1/
Klf2/ Mga/ Tbx21/
Eomes/ Tbx4/ Tbx1

filter89 0.000877186 13.9338102 10 Stat2/ Irf1/ Prdm1/
Bcl11a/ Bcl11b/ Irf2

filter106 0.000836286 11.28191316 10 Tbx20/ Tbx1/ Tbx10/
Mga/ Tbx21/ Eomes/
Tbx5/ Tbx21/ Tbr1/
Bcl11a

filter231 0.000818648 12.81160589 10 Nfkb1/ Rel/ Relb/ Rel/
Rela/ Hivep2/ Hivep1/
Hivep3/ Nfkb2/ Sp110
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filter51 0.000818111 5.223610074 10 Mafk/ Mafg
filter23 0.000810822 17.29094559 10 Ctcf/ Ctcfl
filter97 0.000794982 11.39666997 10 Tbx4/ Tbx5/ Mga/

Tbx20/ Rhox8/ Tbx1/
Tbx10/ Tbx19/ T/
Tbx21

filter120 0.000742252 12.8251035 10 Etv2/ Ets2/
Ets1/ Erf/ ENS-
MUSG00000044690/
Fev/ Etv2/ Gabpa/
Ets2/ Erf

filter9 0.000713634 8.747762923 10
filter275 0.000683147 13.90513714 10 Ctcf/ Ctcfl
filter286 0.00062891 15.79696475 10 Spib/ Sfpi1/ Spib/ Irf1/

Bcl11a/ Bcl11b/ Stat2/
Prdm1/ Etv2/ Ets2

filter240 0.000619261 9.181616067 7 Sp2/ Sp3/ Sp6/ Sp8/
Sp7/ Sp9/ Sp5/ Plagl1/
Zbtb7a/ Zbtb7c

filter236 0.000573209 7.69064873 1
filter230 0.000548002 11.86735023 10 Sfpi1/ Spib/ Etv2/

Ets2/ Erg/ Erf/ EN-
SMUSG00000044690/
Fev/ Spib/ Etv2

filter195 0.00054669 8.849514119 9 Gata2/ Gata3/ Gata6/
Gata2/ Gata2

filter65 0.000523359 12.83675477 8 Nfkb1
filter35 0.000485219 14.09783964 9 Nfix/ Nfib/ Nfia/ Nfic/

Nfix/ Nfib/ Nfia/ Nfic/
Nfix/ Nfib

filter264 0.000475761 5.085780637 9 Mafg
filter8 0.00046047 9.781212087 10 Zeb1/ Snai2/ Id3/ Id4/

Id1/ Mesp2/ Mesp1/
Myf5/ Myod1/ Tcf4

filter173 0.000457876 8.719776746 10 Zfp711/ Zfa/ Zfy1/ Zfx
filter205 0.000437324 13.043296 10 Bcl11a/ Bcl11b/

Sfpi1/ Spib/ Etv2/
Ets2/ Erg/ Erf/ EN-
SMUSG00000044690/
Fev
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filter179 0.00043018 4.040188655 0 Zkscan1/ Srf/ Atf1/
Sp100/ Sp140/
IRC900814/ Dnajc21

filter172 0.000413453 4.586823362 1 Prkrir
filter154 0.000363637 10.16701761 10 Sp2/ Sp3/ Sp6/ Sp8/

Sp7/ Sp9/ Sp5/ Sp2/
Sp3/ Sp6

filter274 0.000349809 4.486219114 0 Dmrt3/ Dmrta1
filter114 0.000346892 3.63658211 5
filter128 0.000342323 3.734457583 1
filter227 0.000327319 10.17649143 10
filter47 0.000306001 9.084441796 10 Runx2/ Runx3/

Runx1/ Runx2/ Runx3
filter219 0.000301505 3.602551329 8 Setbp1/ Atf1/ Mafk/

Dnajc21/ Hbp1/
Zkscan1/ Tcf7/
Homez/ Hhex/ Mecp2

filter201 0.000272047 7.825621662 3 ENSMUSG00000079994
filter211 0.000270309 10.97696139 0
filter85 0.000266754 2.814624733 10 Atf1/ Homez/ Pbx4/

Pbx2/ Pbx3/ Pbx1/
Setbp1/ Dnajc21/
Atf5/ Atf4

filter132 0.000253488 4.498443623 8
filter294 0.000249725 3.734606292 7 Mafk/ Setbp1/ Hmga1/

Hmga2/ Hmga1-rs1/
Atf1/ Zkscan1/ Hhex/
Prkrir/ Dnajc21

filter273 0.000242837 6.504206603 6
filter94 0.000233849 12.97110591 10 Irf1/ Stat2/ Spib/

Bcl11a/ Bcl11b/ Sfpi1/
Spib

filter209 0.000232634 9.095851542 10
filter276 0.000229846 13.49932331 10 Spib/ Sfpi1/ Spib/

Bcl11a/ Bcl11b/ Ehf/
Elf5/ Etv6/ Spic/ Spib

filter297 0.000225054 3.631780121 10 Mecp2
filter58 0.000221362 4.053184804 7 Setbp1
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filter115 0.000220052 4.44280022 9 Setbp1/ Hbp1/ Tcf7/
Hhex/ Hmga1/ Hmga2/
Hmga1-rs1/ Tcf7l1/
Nanog/ Hoxb9

filter290 0.000207083 5.710840446 9 Mafg
filter102 0.000205864 8.741785902 10
filter148 0.000197608 10.45587484 4 Nfe2l2/ Nfe2
filter194 0.000195206 9.837238958 10
filter270 0.000193527 4.41762007 8
filter80 0.000190898 11.09343066 10 Tcf7l2/ Lef1
filter50 0.000164866 9.128977137 10 Tcf7l2/ Lef1
filter162 0.000163157 4.611822441 5
filter30 0.000157237 4.138480327 3 Homez
filter28 0.000154734 6.226353937 9 Mafg
filter73 0.000153573 8.882060357 7 nan/ Lhx5/ Lhx1/

Gsx1/ Vsx2/ Arx/
Prrxl1/ Vsx2/ Rax/
Prrxl1

filter224 0.000152219 13.49567136 10 Stat2/ Irf1/ Bcl11a/
Bcl11b

filter67 0.000151678 9.039821323 10 Mzf1
filter127 0.000143981 9.121384419 10
filter122 0.000138046 8.212007369 10 Etv6/ Elf5/ Ehf/

Elf1/ Elf2/ Etv2/
Ets2/ Erg/ Erf/ ENS-
MUSG00000044690

filter207 0.00013326 5.02135361 6
filter43 0.000124214 4.641292484 8 Pbx4/ Pbx2/ Pbx3/

Pbx1/ Mafk
filter147 0.00012326 9.240360208 6
filter191 0.000111593 7.212592448 1 Atf1
filter14 0.000109722 6.256898425 8
filter164 0.000109263 4.284922921 0
filter139 0.000108369 8.403904967 1 Six1
filter151 0.000102033 6.640858201 8
filter296 0.000101989 5.25963005 7
filter95 0.000101887 6.070796759 4
filter268 0.000100834 4.227078213 2
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filter257 0.0000989 11.95876667 10 Pax9/ Pax5/ Pax8/
Pax1/ Pax9/ Pax5/
Pax8/ Pax1/ Pax9/
Pax5

filter105 0.0000943 12.76764281 9
filter180 0.000094 4.4561539 4
filter183 0.0000937 9.758769455 10
filter153 0.0000915 9.197231963 6
filter247 0.0000896 10.84583255 10 Nfkb1/ Mzf1/ Rel/

Relb/ Nfkb2
filter291 0.0000877 4.662654179 2 Tcf7
filter70 0.0000868 9.921290335 9
filter135 0.0000867 11.07461293 9 Tbpl2
filter210 0.0000862 6.922007029 7
filter241 0.0000839 4.526449324 4
filter281 0.0000836 5.726584818 8
filter298 0.0000826 4.429468168 2
filter100 0.0000787 10.74515578 5
filter239 0.000078 7.510870349 5
filter141 0.0000775 8.087321777 1 Emx1/ Nfil3/ Nkx1-1/

Nkx1-1/ Meox2/ Tef/
nan/ Vsx2/ Dlx3/ Dlx6

filter203 0.000077 7.183626561 2
filter72 0.0000755 4.334675782 5 Setbp1/ Atf1/ Tcf7/

Homez/ Zkscan1/
Pbx4/ Pbx2/ Pbx3/
Pbx1/ Hhex

filter83 0.0000755 4.675820603 1 Dnajc21
filter3 0.0000742 4.643168512 5 Zkscan1/ Mecp2/

Dnajc21/ Mafk/ Atf1/
Foxo6/ Pou3f3/ Irx5/
Irx1/ Hbp1

filter117 0.0000725 8.853449517 4 Arnt2
filter213 0.0000722 8.108926847 4
filter284 0.0000708 6.326748192 8 Irx2/ Irx1/ Rhox11/

Irx5/ Irx1/ Rfx5/ Rfx6/
Rfx4/ Rfx8/ Dmrt1
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filter234 0.0000704 5.756526898 3 Atf5/ Atf4/ Naif1/
Atf2/ Sp140/
IRC900814/ Atf1/
Tef/ Kdm2b

filter123 0.0000703 11.10732837 10 nan
filter253 0.0000698 6.241630823 5
filter101 0.0000688 8.482753328 0
filter31 0.000068 11.91286781 3
filter136 0.0000664 7.723492504 3
filter131 0.0000663 7.754124606 2
filter229 0.000066 6.09104818 6 Hhex/ Hoxd12/

NP 032300.2/ Hoxa10/
Hoxb9/ NP 032296.2/
Hoxc8/ Hoxb9/ Hoxd4/
NP 032296.2

filter75 0.0000658 10.68908648 2
filter69 0.0000657 13.12038514 10 Ctcf
filter49 0.0000654 8.650625448 7 Atf3/ Jdp2/ Atf2/ Atf7
filter198 0.0000652 9.886005642 8 Pax9/ Pax5/ Pax8/

Pax1
filter250 0.0000652 10.7869779 10 Irf1
filter143 0.000065 7.746473215 4
filter244 0.0000647 12.95999431 10 Etv2/ Ets2/

Ets1/ Erf/ ENS-
MUSG00000044690/
Fev/ Etv2/ Ets2/ Erg/
Erf

filter283 0.0000645 7.472977411 9 Nrl/ Mafa/ Maf
filter170 0.0000639 5.602994073 8
filter99 0.0000635 9.123393773 1
filter155 0.0000631 6.884448159 10
filter159 0.0000631 5.63674747 5 Zfp300/ Zscan20/ Atf1
filter214 0.0000619 5.968200513 10
filter91 0.0000612 7.265551141 3
filter55 0.000061 6.644188575 6
filter4 0.0000609 10.02617469 0
filter81 0.0000604 5.143625096 5 Hhex
filter124 0.0000602 8.219548597 9
filter176 0.0000599 8.022155786 4
filter188 0.0000592 8.910855997 0
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filter249 0.0000586 7.252156283 0
filter259 0.0000582 12.02149639 2
filter146 0.0000579 6.651357662 1
filter287 0.0000566 5.23635501 1
filter12 0.0000556 10.19329729 3
filter24 0.0000554 6.276244049 1
filter6 0.0000552 10.77284828 10
filter144 0.0000552 7.10771801 1
filter41 0.0000548 5.887367592 1
filter160 0.0000546 8.384143074 3
filter98 0.0000545 9.05066866 4
filter184 0.0000542 5.644051942 3 Dnajc21/ Setbp1/

Atf1/ Pbx4/ Pbx2/
Pbx3/ Pbx1

filter20 0.0000541 7.857412384 2
filter182 0.0000541 7.857444219 6
filter39 0.0000538 9.34016601 0
filter82 0.0000529 8.952985455 3
filter60 0.0000527 8.437548134 4
filter149 0.0000526 7.123474357 0
filter269 0.0000512 6.968962403 7
filter299 0.0000511 8.056581304 3
filter171 0.0000509 8.807042867 0
filter2 0.0000508 6.602491545 0
filter111 0.0000504 6.551389637 4
filter140 0.0000503 6.940249007 0
filter130 0.0000501 8.686382883 3
filter66 0.0000499 9.306904407 8
filter145 0.0000499 7.835945138 0
filter152 0.0000496 10.96147533 0
filter272 0.0000495 10.36105545 1
filter233 0.0000494 8.142564571 4
filter42 0.0000491 8.278420741 4
filter1 0.000049 7.135086991 10 Atf3
filter142 0.000049 6.16214829 0
filter216 0.0000489 6.501634666 5
filter29 0.0000487 10.95965327 1
filter126 0.0000485 7.849950976 4
filter246 0.0000485 7.794905625 0
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filter178 0.0000481 10.327217 8 Sp2/ Sp3/ Sp6/ Sp8/
Sp7/ Sp9/ Sp5/ Sp2/
Sp3/ Sp6

filter199 0.0000481 7.744841132 4 Hoxb1/ Hoxa1/ Hoxb2/
Hoxd4/ Hoxa6/ Hoxb2/
Pou6f1/ Pou2f3/
Meox1/ Hoxa2

filter33 0.0000477 5.360230505 5
filter262 0.0000475 10.74862289 2
filter103 0.0000474 7.118303554 0
filter192 0.0000474 8.358581497 3
filter17 0.0000473 6.694936865 2
filter138 0.0000462 8.530819708 2
filter109 0.0000461 8.93098452 1
filter222 0.0000461 6.379401097 0
filter26 0.000046 8.427250934 4
filter232 0.000046 6.942583904 2
filter197 0.0000457 9.417900687 0
filter248 0.0000455 7.397851979 1
filter256 0.0000454 10.26651299 6
filter265 0.0000454 5.77818146 1
filter74 0.0000451 7.79247293 2
filter175 0.0000447 9.308963928 4
filter18 0.0000445 10.03106411 2
filter36 0.0000445 8.023095847 3
filter228 0.0000442 8.955259152 4
filter215 0.000044 6.658615306 3
filter5 0.0000439 6.060014083 4
filter61 0.0000437 8.93558998 3
filter13 0.0000434 5.896416221 1
filter157 0.0000433 9.454012595 8
filter125 0.0000431 10.96646503 1
filter137 0.0000423 9.166575155 2
filter19 0.0000418 6.755846361 1
filter186 0.0000412 9.399774999 10
filter267 0.000041 7.152791477 3
filter45 0.0000406 10.50199055 2
filter88 0.0000405 5.916821437 4
filter63 0.0000403 9.971185496 0
filter92 0.0000402 10.05949031 6
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filter263 0.0000401 8.316991382 5
filter285 0.00004 7.637366915 1
filter44 0.0000399 9.969803863 8 Tbpl2
filter280 0.0000398 9.85114045 4
filter21 0.0000396 7.816081845 1
filter200 0.0000391 10.97817101 3
filter261 0.0000388 9.110338959 2
filter254 0.0000385 10.28534523 6
filter278 0.0000385 7.162393957 6
filter48 0.0000382 7.192766847 4
filter54 0.0000379 10.32338372 0
filter113 0.0000379 7.770356573 0
filter84 0.0000374 5.666161006 7
filter118 0.0000371 7.609764226 1 Junb/ Zic4/ Zic3/ Zic1/

Zic4/ Tbx3
filter161 0.0000369 7.123738039 0
filter177 0.0000369 8.053713308 7
filter206 0.0000368 10.52473197 2
filter86 0.0000366 6.70425404 1
filter237 0.0000366 7.347821421 1
filter289 0.0000364 9.989819394 7
filter32 0.0000362 7.846011003 0
filter185 0.0000358 5.469848364 8 Mecp2/ Hhex/ Nr2e1/

Xbp1/ Setbp1/ Cphx
filter243 0.0000358 6.350843954 4 Cphx/ Pbx4/ Pbx2/

Pbx3/ Pbx1
filter107 0.0000358 10.03660388 2
filter59 0.0000353 10.09228773 2
filter79 0.0000352 8.447790033 1
filter16 0.0000351 6.795651699 4
filter96 0.0000346 9.658079637 1
filter150 0.0000346 10.65068912 2
filter119 0.0000344 10.44550581 2 Usf1/ Mitf/ Tcfe3/

Arntl/ Tcfec/ Arnt/
Bhlhe41/ Gmeb1/
Creb1/ Usf2

filter104 0.0000341 8.166199904 0
filter202 0.0000336 9.735935293 10
filter46 0.0000336 8.58816777 0
filter193 0.0000336 8.507109625 2
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filter77 0.0000332 9.536742897 0
filter62 0.000033 7.164869314 2 Gm239/ Gm98/

Zkscan1
filter27 0.000033 7.756526575 1
filter189 0.000033 6.754216621 5
filter90 0.0000326 10.97267291 4
filter181 0.0000326 10.90853891 0
filter56 0.0000324 7.330371177 1
filter196 0.0000323 9.704030662 9
filter225 0.0000321 9.27022719 0
filter223 0.0000316 9.304710026 10
filter156 0.0000316 9.386572384 1
filter52 0.000031 8.134521812 1
filter226 0.0000309 12.10358919 0
filter212 0.0000308 6.822379603 7
filter64 0.0000306 6.770211089 2 Gata2/ Gata5/ Gata2/

Gata3
filter38 0.0000305 8.761957551 1
filter53 0.0000305 8.050241968 4
filter116 0.0000295 10.40140809 2
filter76 0.000029 12.22319326 2
filter110 0.0000289 9.901229468 1
filter266 0.0000286 8.827576915 5
filter22 0.0000279 7.788815142 1
filter282 0.0000278 6.17079111 0
filter293 0.0000275 7.235811417 4
filter204 0.0000274 6.518757601 2
filter7 0.0000265 8.805051502 1
filter221 0.0000259 8.620098067 0
filter277 0.0000256 6.159722079 3
filter108 0.0000255 8.508599291 5
filter71 0.0000252 6.780928854 4
filter134 0.0000248 11.87473453 1
filter251 0.0000243 10.79871508 3
filter37 0.0000242 10.9847853 2
filter129 0.0000235 8.840784607 8 Rarg/ Rara/ Nr2c2/

Nr2c1/ Pparg/ Ppard/
Ppara/ Esr1/ Esr2/
Thrb

filter0 0.000023 7.387973909 3
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filter158 0.0000223
filter163 0.0000223 9.075127994 0
filter25 0.0000203 12.65092678 5
filter168 0.0000189 7.159924343 2
filter208 0.000017
filter169 0.0000108
filter235 0.0000107 14.87710862 5
filter187 0.00000766 9.047789275 0
filter87 0.00000421
filter258 0.00000324 10.78377334 0
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