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Abstract  

To our knowledge age-related loss of chromosome Y (LOY) in circulating leukocytes is the most common form 

of clonal mosaicism. Many recent epidemiology studies have found robust associations between LOY in 

leukocytes and age-related diseases such as blood and solid tumour cancers, Alzheimer’s disease, and macular 

degeneration. Despite these associations, the prevalence and mechanisms of LOY in non-hematopoietic cell-types 

are not well characterized. In response, the need for bioinformatic methods to analyse Y chromosome ploidy 

across multiple genomic/transcriptomic datatypes has escalated. In the past, the Y chromosome was commonly 

removed from genomic analyses for several reasons including low gene count, haploidy, lack of biological 

interest and short-read mapping difficulties. Resultingly, methods for investigating chromosome Y specific trends 

using NGS have suffered and require improvement. The main objective of this thesis was two-fold. First, to 

improve methods of Y chromosome aneuploidy detection using WGS and single-nuclei RNA sequencing. 

Second, to use these improved methods to provide estimates of loss of Y (LOY) in brain tissue – which had not 

previously been established in humans. Using genomic characteristics such as mappability, GC content, and read 

alignment filtering I was able to improve LOY detection in both WGS and single-nuclei RNA-seq. Given high 

sequence similarity between the X and Y chromosome, strict mappability filtering improves, and smooths read 

depth estimates of Y chromosome aneuploidy. Using these methods we estimate that 13.8% of the male 

population represented in the ROSMAP WGS cohort (mean age = 87.2) is affected by LOY in the blood, while 

0% of samples are affected in dorsolateral prefrontal cortex and cerebellum tissue (mosaicism affecting >10% of 

cells). Despite this, we found a significant association between age and reduced Y ploidy in the dorsolateral 

prefrontal cortex (R=-0.35, p=3.9x10-5), suggesting low-frequency LOY may be occuring in the cortex. In single-

nuclei data from the dorsolateral prefrontal cortex we found 8.6% of cells lacked a Y chromosome. LOY was 

enriched in the glial cells, and particularly the microglia where 33% of male cells were affected. Given its 

surprising prevalence in elderly male individuals, LOY may represent an understudied, sex-specific factor 

involved in the female life-span bias and male cancer incidence bias.
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Lay Summary 

Researchers have observed something odd when counting the chromosomes in human white blood cells. 

Regularly, and more regularly with age, some male white blood cells lack their Y chromosome. Recent studies 

have found that about 40% of men older than 70 are missing the Y chromosome in a proportion of their white 

blood cells. Further research has concluded this phenomenon is a sign of damage to DNA and is linked to cancer, 

Alzheimer’s, and other age-related diseases. The goal of my thesis was to improve programs used to detect Y 

chromosome loss and determine if Y loss is also occurring in the brain. In a cohort of elderly men, we found that 

Y loss occurs more frequently in blood than brain. Despite this, we did find early evidence of small levels of Y 

loss in brain tissue. Future studies can use what we have learned to better detect Y loss and investigate it across 

the body.  
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1.  Introduction 

1.1 Post-zygotic mosaicism and aneuploidy in humans 

From the fertilization of an oocyte to the death of an organism, genetic alterations of all sizes - from 

single base pairs to entire chromosomes - are constantly accumulating across its soma. During each cell division 

~0.1-1 mutations arise1, and internal and external mutagens are also spontaneously altering the DNA in each cell.  

While these errors are usually repaired by well conserved cellular mechanisms, inevitably mutations avoid 

detection and persist, which results in a genetically distinct cell within the organism. If these cells survive, grow 

and replicate, an organism will consist of two or more genomically distinct populations of cells - a phenomenon 

referred to as somatic mosaicism. While a majority of these mutations are benign or deleterious, others can 

improve cellular fitness and lead to a clonal expansion.2 Some mosaic clonal expansions can induce cellular and 

tissue dysfunction, and lead to maladies such as cancer3, neurodegenerative disease4, and heart disease.5 

 

Interestingly, for much of the 20th century the genome was largely considered to be uniform across all 

cells in an organism.6 Although the impact of post-zygotic mutation on cancer development and genetic disease 

was known, both were often regarded as rarities and associated with specific disease states. As baseline sporadic 

and replication mutation rates, as well as expected lifetime cell divisions were modelled in humans, many began 

to speculate that the genome may naturally vary between the cells of an organism.7 Visual evidence provided by 

mosaic arrangements of skin abnormalities and disorders provided further evidence supporting the theory that 

widespread, benign somatic mosaicism was a possibility.8,9 However, there often lacked avenues to experiment 

and quantify its existence. Early low-throughput, low resolution karyotyping efforts and fluorescence in situ 

hybridization (FISH) studies suggested large structural variation within an organism was a relatively common 

occurrence in blood.10–13 But it was not until recent deep sequencing efforts14–19, especially those focusing on the 

genome of single cells that it was shown all tissues of multicellular organisms largely consist of genetic 

mosaics.20–22 Evidence suggests that post-zygotic mosaicism is widespread in a significant proportion of the cells 
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in all tissues through unique single-nucleotide variants (SNV), copy-number variations (CNV), and other 

structural variants (SV).15 Somatic mosaicism is an important factor influencing phenotypic variability, and 

represents a hidden, relatively unexplored confounder in genetic testing.23   

 

1.1.1 Cell-specific rates of mosaicism  

The propensity for a tissue to develop mutations and clonal expansion relies on factors that include 

cellular turnover rate (cell lifespan), exposure to environmental mutagens and age.15 Tissues largely composed of 

fully differentiated cell types that are protected from environmental interaction show reduced mutational load. 

This includes tissues such as skeletal muscle, cardiac muscle, adipose and brain tissue. Whole blood, skin, liver, 

intestines, esophageal mucosa and lung are frequently mutated at higher rates as they are exposed to the 

environment, and/or turnover rapidly.15 For example, skin cells are consistently exposed to UV radiation and other 

carcinogens, and as expected skin has some of the highest rates of somatic mutation and clonal mosaicism.15 Age 

is a particularly significant factor in the blood, as hematopoietic stem cells (HSPCs) rapidly turnover billions of 

cells a day.3 Mutations inevitably accumulate in HSPCs over time and their progenitors populate the circulation 

with increasingly mutated daughter cells that can be selected for and lead to clonal mosaic expansions. Because of 

tissue-specific microenvironments and architecture, rates of somatic mosaicism between tissues vary in response 

to age and other factors. 

 

1.1.2 Somatic aneuploidy  

In humans, a majority of post-zygotic mutations consist of SNVs and small insertions and deletions; 

however, a small portion are comprised of copy changes to whole chromosomes which is referred to as 

aneuploidy.19,24 Aneuploidy arises from nondisjunction which is the failure of homologous chromosomes to 

properly segregate during mitosis or meiosis. A large body of evidence has concluded that aneuploidy is 

detrimental at both the organismal and cellular level.25 In humans, aneuploidy is the leading cause of spontaneous 
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abortions26, and is present in ~68% of solid tumors.27 At the cellular level, experiments in aneuploid yeast28, 

mice29 and other organisms25 have found general fitness consequences including defects in cell cycle progression, 

proliferative disadvantages, increased sensitivity to cellular stress and impaired metabolic properties. Gene dosage 

imbalances associated with extensive gene duplication or deletion are rarely tolerated in healthy cells and are 

negatively selected against. In contrast, aneuploidy is a hallmark of the cancer genome and is frequently tolerated 

in most neoplasms.27 Although cancer-specific, recurrent single-chromosome aneuploidies are rare, sporadic 

aneuploidy is commonly a consequence of general genomic instability and is thought to provide a selective 

advantage to cancers through genomic heterogeneity. Cancers containing multiple aneuploidies are often more 

aggressive, prone to reoccurrence, metastasis and drug resistance.30 This suggests the additional genetic material 

and multiple copies of oncogenes (or deletion of tumor suppressors) allow for greater genomic adaptability 

eventually leading to further increases in genomic instability and aneuploidy. Aneuploidy in cancer provides 

evidence that in certain states cells can withstand the presence of aneuploidy and thrive.  

 

1.1.3 Aging and somatic mosaicism 

Aging is a process of gradual cellular and organismal deterioration aided through both normal 

physiological processes and environmental factors. One of these processes is the accumulation of somatic DNA 

aberrations.31 Somatic mutation accelerates aging through damage to critical genes, dysregulation of expression, 

and further genomic instability which heightens risk of neurodegeneration and other age-related diseases.32 

Chromosomal aneuploidy is an indication of genome instability and is considered a hallmark of aging.31 One 

obvious model to investigate the aging process and its relation to genome instability is through rare human 

diseases with progeroid phenotypes – phenotypes resembling premature aging. Most progeroid diseases involve 

the disruption of DNA repair (ERCC6, ERCC8; Cockayne syndrome), telomere maintenance (TERT, TERC, 

CTC1; Dyskeratosis congenita) or mitotic spindle checkpoint genes (BUB1B, CEP57; Mosaic variegated 

aneuploidy syndrome (MVA)).  MVA is a rare autosomal recessive disease that is particularly relevant for 

investigating the relationship between aneuploidy and aging. The commonly affected gene in MVA, BUB1B 



4 
 

(Mitotic Checkpoint Serine/Threonine Kinase), is a central component of the mitotic spindle checkpoint that 

primarily delays anaphase until all chromosomes are properly attached to mitotic spindles and prepared for 

segregation.33 MVA is characterized by extremely high rates of aneuploidy (~25% of all cells), which leads to 

several classic progeroid features including short stature, increased risk of cancer, nervous system abnormalities, 

cataracts, loss of fat, curvature of the spine and premature death.33 Murine models were developed with differing 

hypomorphic Bub1r mutations, each with varied impact on Bub1b protein levels, allowing for a gradient of 

Bub1b deficient mice.34 Mice below ~10% WT Bub1r levels were not viable, however those with increasingly 

reduced functional Bub1b levels experienced the most severe progeroid phenotypes. Additionally, in WT mice 

Bub1r protein abundance decreased in several tissues with chronological age, especially in the ovaries, suggesting 

reduced Bub1r expression could be a normal physiological avenue for inducing the natural aging process. In a 

follow-up study, Bub1r was overexpressed and mice tended to live longer and experienced less age-related tissue 

degeneration.35 MVA and the Bub1b mouse provide further evidence that organisms can persist through high-

levels of aneuploidy, while also accumulating detrimental, age-related phenotypes.  

 

1.1.4 Clonal mosaicism in the blood 

Studies in humans and mice have found evidence of varying levels of somatic aneuploidy in many cell 

types including the buccal cells 36, lymphocytes37, fibroblasts38, leukocytes39, neurons40,41 and hepatocytes.40 The 

most commonly studied example of this phenomenon is in human leukocytes, where the frequency of large 

structural aberrations (including whole chromosome aneuploidy) increases significantly with age. In the bone 

marrow, ~20,000 self renewing HSPCs and their progenitors give rise to  about 1011 to 1012 new cells daily (10 

billion of which are leukocytes) to maintain the required immune cell representation in peripheral circulation.42 

The combination of accumulating mutation load in HSPCs, and mitotic errors arising during constant rapid cell 

turnover, results in a mosaic of genetically distinct clones in the blood. As clones compete to replicate and 

expand, those with positively selected traits populate the circulatory system in greater numbers. Many studies 

have discovered high rates of aberrant clonal mosaicism in the normal blood cells of healthy individuals that 
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increase with age.15,43–45 These age-associated clonal aberrations consist of mosaics of post-zygotic SNVs, CNVs 

and SVs that recurrently affect many genes, some of which are linked to cancer and leukemic or pre-leukemic 

states.44 In a longitudinal study, SVs (>1MB) in blood were detected in 3.4% of 294 healthy subjects >60 years 

old, compared to 0% in the younger group of 342 (<55 years old).44 The wealth of data from genome-wide 

association studies (GWAS) has also been reanalyzed for mosaic SVs (>2MB) with similar conclusions. In an 

analysis of 26,136 cancer-free controls from 13 GWAS studies, the prevalence of large autosomal mosaic SVs 

increased from 0.23% in individuals under 50 years old to 1.91% between those 75 to 79 years old.45 In the same 

study, when compared to healthy controls, rates of mosaic abnormalities were significantly elevated in 41 

individuals diagnosed with leukemia within 1 year of blood collection (OR = 35.4, P = 3.8 x 10-11).45 These results 

emphasise the importance of age on rates of clonal mosaicism in the blood, and the associated risk of disease.  

Subsequent studies have shown large SV mosaicism affects the sex chromosomes at much greater rates 

than the autosomes. X-chromosome mosaicism occurs at ~4 times the rate seen in autosomes and the most 

common post-zygotic aneuploidy in humans is the mosaic loss of chromosome Y (LOY) in male leukocytes.39 

Recent estimates suggest ~43.6% of men over age 70 have detectable mosaic LOY (>5% of cells affected), 

compared to just 2.5% at age 40.39 Across several studies this result has been consistently replicated. LOY has 

been robustly correlated with smoking46, and a suite of age-related diseases including Alzheimer’s47, non-

hematological tumors48, macular degeneration49, immune conditions50,51, type 2 diabetes52, heart disease52 and all-

cause mortality (Table 1.1).53 In fact, individuals harbouring high percentages of LOY cells (>30%) have a 

elevated risk of recurrent cancer and reduction in average lifespan.39 Because LOY is a male-specific aberration, it 

raises the possibility that compromised Y-linked gene expression (though dysregulated tumor 

suppressor/oncogene expression and/or disrupted immunosurveillance) could have a role in the male-female age-

related mortality gap and male cancer incidence bias.39,54 Further research into the effect of LOY at a cellular level 

in multiple tissues is necessary to substantiate these claims and to fully understand its impact on age-related 

disease.  
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1.1.5 Somatic mosaicism in the brain 

Despite low neuronal turnover rates, a number of studies have found evidence of somatic mosaicism in 

the brain that arises during development and increases with age.15,21,55 Recent deep sequencing and single-cell 

sequencing efforts have found that individual neurons commonly possess ~800–2000 unique SNVs55, and 13–
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Association variable Cohort size Results P-value Technology  Tissue 

sampled 

Reference 

Air pollution 

(Increased PM10) 
897 NA 0.03 SNP-array Blood Wong et al. 2018 

All cause mortality 982 HR = 1.91 [95% CI 1.17-3.13] 0.01 SNP-array, WGS Blood Forsberg et al., 2014 

Alzheimer’s disease 606 case, 1005 control OR =  2.80  0.0184 SNP-array, WGS Blood Dumanski et al. 2016 

Autoimmune 

thyroiditis 
31 case, 88 control 

Case = 1.95% LOY [0.56-7.2%] 

Control = 1.31% LOY [0.2-5.6%] 
0.037 SNP-array Blood Persani et al.  

Cancer mortality 982 HR = 3.29 [95% CI 1.51-7.15] 0.003 SNP-array, WGS Blood Forsberg et al., 2014 

Longer duration of 

schizophrenia 
146 case, 360 control OR = 1.11 [95% CI 1.03-1.19] 0.007 qPCR Blood Hirata et al., 2018 

Macular 

degeneration 
5772 case, 6732 control HR = 1.33  [95% CI 1.206-1.472] 1.6e-08 SNP-array Blood Grassmann et al. 2018 

Secondary 

cardiovascular 

events 

366 case HR = 2.28 [95% CI 1.06-4.76] 0.02 SNP-array 
Blood, 

atherosclerotic 

plaque 

Haitjema et al. 2017 

Smoking 

634 current, 3507 never 

218 current, 892 never 

48 current, 439 never 

TwinGene: OR = 4.3 [95% CI 2.8-6.7] 

ULSAM: OR = 2.4 [95% CI 1.6-3.6] 

PIVUS: OR = 3.5 [95% CI 1.4-8.4] 

1.31e-11 

0.0006 

0.02 

SNP-array Blood Dumanski et al. 2015 

Smoking 
27,748 current 

108,859 never 

3.4% LOY current [mLRR-Y <-0.15] 

0.92% LOY never [mLRR-Y <-0.15] 
7.9e-50 SNP-array Blood Loftfield et al., 2018 

Smoking 

934 current 

5410 former 

3408 never 

- 

OR = 1.33 [95% CI 1.12-1.57] 

OR = 2.35 [95% CI 1.82-3.03] 

- 

0.001 

5.55e-11 

SNP-array Blood, buccal  Zhou et al. 2016 

Solid tumors 

mortality 
982 HR = 3.62 [95% CI 1.56-8.41] 0.003 SNP-array, WGS Blood Forsberg et al., 2014 

Testicular germ cell 

tumor 
678 case, 774 control OR = 0.34 [95% CI 0.10-1.17] 0.09 qPCR Blood Machiela et al. 2017 

Table 1.1 Summary of LOY association studies 
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41% of human frontal cortex neurons contain large SVs (>1MB).21 Mosaic aneuploidy in the brain also 

appears common. Estimates from early studies using FISH and spectral karyotyping vary widely20, but recent 

high-resolution, single-cell whole genome sequencing (scWGS) studies have shown neuronal aneuploidy ranges 

from 0.6 to 4.9% across the autosomes.21,40,41,56. There are several factors leading to the genetic heterogeneity seen 

in the brain. Extensive cell division during development can lead to mutations in neuronal stem/progenitor cells, 

which are propagated to all future cells in the lineage, leading to clonal mosaic expansion.20 Accumulation of age-

related mutation is caused by both exogenous factors including radiation, viruses, and mutagenic chemicals and 

endogenous factors including cytosine deamination, reactive oxygen species, and defective DNA damage repair. 

Benign somatic mosaicism in neurons may provide benefits through increased genetic diversity and 

transcriptional heterogeneity allowing for clonal populations to form specialized networks and functions.57  

However, neuronal specialization is already a tightly regulated process and somatic mutation is a known risk 

factor for intellectual disability, and neurodegenerative disorders.57 

 

1.2 Mechanisms of chromosome Y loss in the blood 

Mosaic loss of chromosome Y in the blood likely occurs as a result of segregation errors during rapid 

haematopoietic replication.39,48 Clones lacking the Y may infer a selective advantage and proliferate, however 

there are several theories on what specific mechanisms lead to this selective advantage. Chromosome Y is the 

smallest chromosome, is not required for cell viability and only contains 9 genes that are ubiquitously expressed 

outside of the testes. This makes the Y chromosome the most dispensable human chromosome.58 As a result, LOY 

could be a marker of general genomic instability, as its loss is more easily tolerated and therefore is observed at 

greater frequency. Another theory postulates that an important Y-linked growth suppressing gene is deleted when 

the Y is lost and proliferation capabilities benefit.39 For example, Y-linked genes ZFY and UTY, are considered 

potential tumor suppressor genes.59 Both genes have X chromosome homologs (ZFX, UTX) that have tumor 

suppressor qualities, escape X-inactivation and could provide an explanation for recurrent Y chromosome loss in 

many cancers. Furthermore, key pseudoautosomal region (PAR) genes such as CD99 and SLC25A6, which are 
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involved in apoptosis and leukocyte migration, respectively, could be subject expression dysregulation during Y 

chromosome loss.60 However, these competing theories are not mutually exclusive, and it is possible passenger 

and casual processes are occurring simultaneously.  

Chromosome Y abnormalities including microdeletions and nullploidy are frequently observed in many 

human malignancies61, although in most cases there is limited evidence that Y loss directly leads to tumor 

progression.62,63 In testicular germ cell and prostate tumors, male-specific Y chromosome microdeletions are 

found in almost all samples, with more Y-linked genes being affected in advanced stages.63 Bladder, renal cell, 

prostate, head and neck, esophagus, male breast cancer, hematological disorders and several other cancers show 

significant rates of LOY.63,64 Interestingly, gain of Y events are observed but much less frequently.64 Despite 

correlation between Y loss and cancer progression, patterns are complicated and tissue dependant. In bladder 

malignancies evidence suggests LOY is a passenger event that does not affect tumorigenesis, however in sporadic 

colorectal cancers LOH in the PAR region may play a role in tumor progression.64  

 

1.2.1 Epidemiological associations and GWAS loci 

Despite broad epidemiological associations between LOY and age-related disease, determining whether 

LOY is a casual force, or a passenger biomarker has been elusive. Either i) LOY causes a direct negative effect to 

leukocytes and other tissues, through the dysregulation of a tumor suppressor and/or disruption of the immune 

pathways leading to disease or, ii) LOY is a biomarker of general genomic instability, a recurrent passenger 

mutation that signals a decline in DNA maintenance that eventually leads to the observed correlations with age-

associated disease and cancer. However, both of these hypotheses could be true. A recent large UKBiobank 

GWAS study investigating the genetic risk factors for LOY found 137 novel significantly associated loci in 

addition to 19 previously replicated loci.39 LOY-associated variants were enriched near somatic cancer drivers 

(CHEK2, TERT) , cancer therapy targets (PARP1), cell-cycle control genes (CCND2, CDKN1B), and DNA 

damage response pathway genes (SETD2, TP53). Genetic risk scores using the 156 LOY-associated variants 

found an increased risk of prostate cancer (Odds ratio (OR) 1.68 (95% CI 1.33–2.11); P = 1.9 × 10−5), testicular 
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germ cell tumour (OR 2.97 (1.45–6.07); P = 0.003), and glioma (OR 2.3 (1.34–4.17); P = 0.004). These findings, 

and similar findings before them suggest germline variants could predispose individuals to LOY, and these same 

loci predispose to cancer, suggesting LOY is likely a consequence of general genomic instability.39,65 To further 

elucidate the casual force of LOY, Thompson et al. tested whether LOY susceptibility loci affected disease risk in 

females.39 Because females lack a Y chromosome, any significant association would suggest that LOY-associated 

loci affect genomic instability in general, and not in a Y chromosome specific manner.  When the LOY loci were 

given polygenic risk scores for genomic instability-linked, female-specific conditions, both breast cancer (OR 

1.25 (1.04-1.49); P = 0.016) and later age at menopause (P = 0.003) were found significant.66 These results 

suggest the LOY is biomarker of general genomic instability, however they do not exclude the possibility that 

LOY could still be a casual factor in disease. Further investigation into LOY-specific mechanisms and expression 

patterns is required to answer these questions. 

 

1.3 Genetics of chromosome Y 

Humans have an XY sex-determining system, with the presence of the SRY loci on the Y chromosome 

determining male sex and development. The human X chromosome is ~156Mb in length and contains 1,480 

known genes (841 protein coding, 639 long and short noncoding RNAs; Ensembl release 99).  In comparison, the 

Y chromosome is ~57.2Mb in length, represents about 2% of the human genome and is considered gene-poor, 

containing ~173 genes (66 protein coding, 107 long and short noncoding RNAs; Ensembl release 99).67 For many 

years the perceived function of chromosome Y was confined to sex determination and spermatogenesis.68 Modern 

genetics studies have reinforced these functions, while also uncovering several ubiquitously expressed Y 

chromosome genes and associations between Y-linked gene expression, the immune system and human disease.58  
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1.3.1 Evolution  

Mammalian sex chromosomes evolved from a homologous autosome pair ~180-220 million years ago (mya) after 

one member, proto-Y, acquired a sex-determining locus (SRY).68 During this time, these proto-X and proto-Y 

chromosomes were of similar size and recombined across their entire length.  Over millions of years the pseudo-

sex chromosomes began differentiating into the current human X and Y. Through a series of chrY-specific 

inversion events the transfer of genetic information between X and Y was eventually limited to the pseudo-

autosomal regions (PAR). Each chromosome began independently evolving, leading to significantly differing 

genetic content and function. Despite the extensive divergence, modern sequence in the PAR is near 100% 

identical between X and Y, and crossover between these regions is required for proper segregation in male 

meiosis.64 PAR1 covers 2.7Mb on the short arm of X and Y, while PAR2 spans 0.32Mb on the long arms, 

together comprising 4.6% of the Y chromosome and hosting several critical genes (Figure 1.1).68  

 

1.3.2 Male specific Y region (MSY) 

The remaining 95% of chromosome Y is referred to as the male-specific Y region (MSY), and it is 

composed of both heterochromatic and euchromatic regions. The heterochromatic region comprises much of the q 

arm of chrY and is largely genetically inert, although the region may play a role in chromatin remodelling.69 The 

heterochromatic region largely consists of repetitive sequence from highly repetitive sequence families (DYZ1 

and DYZ2), and is polymorphic in length between male populations.  DYZ1 is a 3.4KB sequence largely 

composed of the 5bp repeat “TTCCA”. The region is polymorphic in length between populations, but most males 

have approximately 3000-4300 copies of DYZ1, constituting about 20% of the entire Y chromosome.70 The 

euchromatic MSY can be divided into three main classes: X-transposed region (XTR), X-degenerate region 

(XDR), and the ampliconic region, each with a unique evolutionary history.69 The X-transposed region (3.38Mb) 

shares 98.78% sequence homology with Xq21 and is a result of an X to Y duplication event that occurred 3-4mya  
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Figure 1.1 The human sex chromosomes share three regions of high sequence homology. The pseudoautosomal 

regions (PAR), PAR1 and PAR2 are 100% homologous. The X-transposed region (XTR) shares ~99% sequence 

homology. The Y chromosome PAR1 is ~2.78 million bases (Mb) spanning from Y:10,001 to 2,781,479. The 

chromosome Y PAR2 is ~0.33 Mb and spans from Y:56,887,903 to 57,217,415. PAR1 and PAR2 on the Y 

chromosome are identical in sequence to the X chromosome PAR1 X:10,001 - 2,781,479 and PAR2 X:155,701,383 

to 156,030,895. The male specific Y region (MSY) constitutes 95% of the Y sequence and does not recombine with 

the X. 
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after the divergence of humans and chimpanzees.69,71 The region contains two protein coding genes (PCDH11Y, 

TGIF2LY), that both possess X-linked homologs.72 The XDR consists of remnant sequences from the ancient 

autosomes that X and Y originally evolved from. The XDR contains 16 protein-coding genes (most of which are 

expressed widely) in addition to many pseudogenes. Most genes in the XDR have X-linked homologs with 

varying sequence identity (30-96%).69 The ampliconic region is composed of palindromes and inverted repeat 

sequence that contains 9 genes, most of which are exclusively expressed in the testes.69 The palindromic sequence 

in the MSY enables local recombination in an otherwise non-recombining region. Palindromes enable 

intrachromosomal gene conversion that likely decrease rates of chrY degeneration and increase ability to adapt. It 

is complicated, repetitive regions such as the ampliconic region that make Y chromosome sequencing efforts 

challenging. 

 

1.4 Loss of Y detection methods 

The goal of this section is to establish the historical and methodological groundwork of technologies used 

to karyotype human samples specifically in the context of chromosome Y. The most commonly used and most 

impactful technologies have been described in detail, however a full summary of all methods has been provided in 

Table 1.2.  

 

1.4.1 Karyotyping and fluorescent staining 

Beginning in the 1960’s, in the infancy of cytogenetics, several labs undertook large karyotyping projects, 

often observing thousands of cells to estimate the prevalence of aneuploidy in tissues of healthy individuals in 

response to aging.10,11 Before the use of fluorescent banding techniques, when chromosome identification was 

difficult and chromosomes were grouped on size and centromere location, Jacobs et al. found age-related 

increases of aneuploidy in female M chromosomes (chr6-12, chrX), and male Y chromosome (which could be 
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individually identified with “good preparations”).10 In the 1970’s chromosomal banding was developed, and 

individual chromosomes were more easily identified. Several subsequent studies observed age-associated mosaic  
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Method mLOY detection Pros Cons 

Karyotyping Cells are suspended in metaphase, 

and condensed chromosomes are 

stained and visually inspected.  

Genome-wide detection, single-cell 

resolution, low error rate 

Labor intensive, very low throughput, requires 

cell culturing, cells must be actively dividing. 

Interphase fluorescent in-situ 

hybridization (FISH) 

Probes with Y-specific sequence 

are inserted into a single-cell. If the 

probe binds it fluoresces and is 

visually detected through 

microscopy.  

Inexpensive, high sensitivity, single cell 

resolution 

Labor intensive, requires technical expertise, 

low throughput, probe design requires prior 

knowledge of abnormality of interest. 

Quantitative fluorescent PCR 

(qPCR) 

Probes to highly homologous but 

slightly differing genes, AMELY 

and AMELX, are used to quantify 

the genomic content ratio between 

X and Y chromosomes.  

Inexpensive Not scalable, cannot distinguish deletions and 

duplications from complete aneuploidy at the 

probe site, labor intensive. 

Single-nucleotide polymorphism 

array (SNP-array)  

Median probe intensity (mLRRY) 

across probes in the male specific 

Y  region. Allelic ratios in the PAR 

region can also be used to 

determine relative X and Y 

abundance.  

Highly scalable, relatively inexpensive for 

large cohorts, accurate,  processing 

pipelines are well established, can detect 

deletions, amplifications, LOH and copy 

neutral LOH, small data files. 

Cannot detect balanced rearrangements, lacks 

single-cell resolution, LOY detection is 

contingent on >5-10% of cells being LOY, 

samples usually confined to whole-blood tissues 

in online databases. 

Bulk whole genome sequencing 

(WGS) 

In each sample chrY read depth is 

measured across genomic intervals  

and normalized to genome-wide 

read depth. Allelic ratios of variants 

in the PAR region can also be used.  

Base pair resolution, enhanced coverage, 

scalable, can detect balanced 

rearrangements, often available in a wide-

range of tissues in online databases.   

Expensive, read mapping biases and artefacts 

are common, data can be difficult to analyze, 

large amount of data to store 

Single-cell WGS (scWGS) In each cell chrY read depth is 

measured across genomic intervals 

and is normalized to cell-specific 

genome-wide depth.  

Single-cell resolution, high chromosomal 

resolution even at low coverage (1-2%), can 

survey thousands of genomes from a single 

sample.  

Expensive, whole genome amplification adds 

additional PCR artefacts, large amount of data 

to store, library preparation can be labour 

intensive 

Bulk RNA-sequencing (RNA-seq) Common approaches include 

measuring read depth across 

genomic windows of each gene 

region on a chromosome and 

comparing to genome-wide 

average.  

Provides additional gene expression 

information that can be synthesized with 

aneuploidy/CNV information, RNA-seq 

data from many tissues is widely available 

in public databases. 

Moderately expensive, using RNA as a proxy 

for DNA introduces error and variability, highly 

affected by sequencing depth, chrY expression 

is limited in many tissues, difficult to detect 

low-level mosaicism, lacks single-cell 

resolution  

Single-cell RNAseq (scRNA-seq) Assumes LOY in a cell if there is a 

complete absence of male-specific 

Y gene transcripts. 

Provides additional cell-type and gene 

expression information that can be used 

downstream, single-cell resolution, widely 

available in public databases. 

Expensive, using RNA as a proxy for DNA 

introduces error and variability, chrY 

expression is limited in many tissues, dependent 

on per-cell read depth. 

Table 1.2 Summary of methods used to detect Y chromosome loss.  
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loss of chromosome Y (45,X0) in males and chromosome X in females (45,X0) in circulating 

leukocytes73, and bone marrow11,74,75 at higher rates than autosomes and in individuals over age 60. 

Chromosome Y loss was also consistently observed in various leukemias76–78 and hematological 

disorders79, and investigators were eager to use Y loss as a cancer biomarker. However, the observation of age-

associated LOY in both normal aging individuals and those with hematological pathologies created controversy in 

the field. It wasn’t clear whether Y loss was involved in the malignancy process or was simply a by-product of 

aging biased by the older subset of the population affected by the diseases being studied.80 At the time, the 

consensus was in pathological situations abnormal cells lacking chrY could provide a selective advantage leading 

to increased proliferation. But in haematologically normal individuals, the aberration was assumed to be 

selectively neutral and therefore clones were not selected against.80 Nevertheless, the mechanism and health 

implications of chromosome Y loss was still not well understood.   

Classical karyotyping is still a commonly used method to observe the ploidy of cell cultures and prenatal 

samples as it is easily assessable, inexpensive, and provides single-cell resolution. Classical karyotyping requires 

cells to be in metaphase, and to collect a sufficient number of cells for analysis cells must be cultured and actively 

replicating. During metaphase, the chromosomes reach peak condensation and can be observed via microscope. 

Metaphase chromosomes are treated with trypsin, a protease that relaxes the chromatin structure, which allows 

stains such as Giemsa to bind the DNA in a process known as G-banding.81 This provides additional resolution to 

the karyotype and allows for the identification of specific chromosomes, and large structural aberrations. When 

investigating aneuploid mosaicism, karyotyping does have some limitations and biases. As the number of cells 

affected by a mosaic abnormality is reduced, a greater number of cells must be assayed in order to detect them 

which limits the ability for classical karyotyping accurately predict low-frequency mosaicism. Also, cells must be 

cultured and actively replicating which can potentially lead to an overestimation of aneuploidy events.82 

Nevertheless, karyotyping is still a practical and cost-effective method for scanning the ploidy of single cells 

across the entire genome.     
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1.4.2 Fluorescence in-situ hybridization  

In the late 1970’s classical cytogenetics were improved through the use of in situ hybridization of 

fluorescently labelled probes, commonly referred to as FISH.83 The technique was revolutionary because it 

allowed for high-resolution detection, quantification and visualization of designed nucleic acid probes. FISH was 

particularly useful in clinical newborn chromosomal abnormality detection, as the assay was accurate, but also 

rapid and did not require the 10 to 21-day cell culture required for conventional cytogenetics.83  The widespread 

adoption of FISH allowed for larger sample-size aneuploidy surveys. Across 2490 pooled cases, the association 

between LOY and age was confirmed again, with an additional finding that the percentage of cells affected by 

LOY in an individual also increased with age.84 Oddly, LOY was observed at similar rates in normal, pre-

leukemia and acute myeloid leukemia cases, which again supported the notion that LOY was a neutral, age 

associated aberration that was not causal in disease-related processes.  

As a result of the widespread belief that the Y-chromosome was a “genetic wasteland”,  in combination 

with technical difficulties detecting its presence compared to autosomes85, research on the Y slowed in the 1980’s 

and 1990’s.86 FISH evolved into comparative in situ hybridization technologies such as comparative genomic 

hybridization (CGH) and later array-based CGH genome-wide assays that could accurately detect chromosomal 

abnormalities by separately dyeing case and control samples and comparing relative fluorescence. Array-CGH 

was primarily used for tumor and embryo karyotyping.87 Applications towards aneuploidy and LOY in healthy 

individuals were limited.   

 

1.4.3 Single nucleotide polymorphism arrays (SNP-array) 

In the late 2000’s, the use of SNP-arrays exploded primarily as a result of the widespread adoption of 

genome-wide association studies (GWAS).88 Commercial SNP-array platforms allowed for rapid and accurate 

genotyping of millions of genetic markers that could be applied to thousands of individuals and resulted in the 

discovery of many disease-associated loci. The standardization of the platform and increased availability of array-
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based data led to interest in the prospect of applications in CNV and SV calling.89 Several aspects of SNP-arrays 

were well suited to the problem, including dense genomic coverage and allele-specific probe design. At each loci 

a SNP-array contains two unique hybridization probes, each specific to the two known alleles at the site and 

named A and B. The genotype at this specific SNP can be determined by the ratio of hybridization intensities 

between probe A and B. SV and CNVs can be detected by comparing the median hybridization intensities across 

multiple SNPs to a set of diploid reference intensities, resulting in what is known as the log R ratio (LRR). LRR 

values around 0 are considered copy-neutral, whereas deviations from 0 above or below a threshold are 

considered either loss or gain events. For example, duplications result in additional genomic content and this is 

observed on the SNP-array through heightened hybridization intensities in the affected regions compared to the 

diploid control population. This event produces an LRR significantly greater than 0. Allele-frequency ratios at 

heterozygous SNP sites can be used as an orthogonal line of evidence. Consistent deviation from expected allelic 

ratios across genomic segments indicates the existence of copy-number alterations. Through the use of 

hybridization intensities and allele frequencies on SNP-arrays, SV calling including mosaic SVs (affecting >10% 

of cells)53 can be called through several widely available tools.90,91  

The current state and awareness of mosaic loss of Y research in males can largely be attributed to work 

from the labs of Lars Forsberg and Jan Dumanski and their initial use of genotyping arrays to investigate mosaic 

Y chromosome aneuploidy in longitudinal cohorts containing thousands of aging individuals.53 The groups from 

Uppsala University in Sweden have innovated and standardized mosaic aneuploidy detection for the Y 

chromosome and have brought the surprisingly common aberration to the attention of the medical genetics 

community.  In 2014, Forsberg et al. genotyped whole-blood samples from 1153 men extracted between the ages 

of 70.7-83.6 using Illumina’s 2.5MHumanOmni array.53 Originally, they were focused on small, acquired, Y-

linked structural variants including deletions, gains, duplications, and acquired uniparental disomy. However, to 

their surprise the most common variant was overwhelmingly the total loss of Y. After removing individuals with 

previous cancer diagnoses, 8.2% of men showed significant mosaic loss of Y, (~>10% of all blood cells lacking a 

Y chromosome).53 As blood draws were taken longitudinally in this cohort, the cause of death of many individuals 
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within the study was already known. Using this extensive longitudinal metadata, a continuous measure of LOY 

severity (median LRR across the Y male specific region of chromosome Y; referred to as mLRRY) was 

significantly associated with risk of all-cause mortality (HR=1.91, p=0.01), and risk of developing both 

hematological (HR=3.29; p=0.003) and non-hematological cancers (HR=3.62; p=0.003). The results were 

replicated in a similar cohort of 1016 Swedish men (PIVUS cohort). This paper reignited interest in LOY and 

provided strong evidence that LOY in healthy males could be a biomarker for age-related diseases such as cancer.  

Subsequent studies using SNP-arrays found robust associations between LOY, environmental exposures 

46,92 and disease risk 47,49, providing evidence against the long-held notion that LOY in the blood was a 

phenotypically neutral event. In 2015, Dumanski et al. found that smoking had a dose-dependant association with 

LOY in blood.46 Current smokers were found to have a 4-fold risk for LOY in blood compared to non-smokers, 

and individuals that smoked more frequently had an increased risk of LOY that was reduced to baseline ~20 years 

following smoking cessation. The following year Dumanski et al. discovered significant associations between 

LOY and Alzheimer’s disease, further suggesting that LOY could have causal effects on disease development and 

immune system dysfunction.47 These flagship studies paved the way for several epidemiological LOY studies 

aimed at finding further associations. These studies concluded LOY in blood is associated with increased risk of 

various cancers93, macular degeneration49, autoimmune thyroiditis51, biliary cirrhosis50, major cardiac events94, 

obesity52 and type 2 diabetes (Table 1.2).52 In 2019, 205,011 men from the UK Biobank were surveyed for LOY, 

making it the largest LOY study to date.39 Using allele-specific genotyping intensities, strong age-LOY 

associations were replicated once again and over 20% of the surveyed population showing detectable mosaic loss 

(>10% of cells with LOY). 

 

1.4.4 Whole genome sequencing (WGS) 

The ability to completely sequence genomes in their entirety has improved the ability to detect somatic 

variation and has drastically altered the landscape of medical research and clinical genetics. Advancements in 
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microfluidics, fluorescence microscopy, computational power and the completion of the human genome all 

combined to advance low-throughput Sanger sequencing to modern high-throughput DNA sequencing. Although 

each brand of short-read sequencer has a different protocol, the resulting output data consists of millions of short 

90-300bp reads. Using in silico mapping algorithms, each read is mapped back to its original location on the 

reference genome, essentially re-assembling the genome and providing the full sequence. Over ~48 hours, modern 

machines (Illumina NovoSeq4000) can sequence 2.5 billion 300bp reads, creating 750GB of genomic data.95  

For digital karyotyping and SV detection, short-read whole genome sequencing improves on SNP-array 

technology by providing genome-wide depth at base-pair resolution. At standard coverage (30x), hundreds of 

millions of mapped reads provide the information required to accurately deduce CNVs, and structural variants 

(SV) including inversions, translocations and whole chromosome aneuploidies.96 Also when making mosaic SV 

calls, as with SNP-arrays, >10% of the input cells must be affected for detection.97 Most SV detection programs 

use a combination of read depth analysis and alternative allele fractions.98–100 Read depth analysis uses fixed or 

sliding genomic windows to calculate the median read depth across a genomic interval which is then compared to 

the median read depth genome-wide.101 Several studies have found that SNP-array mLRR-Y values are highly 

correlated with LOY estimates derived from WGS.97 But despite rapid reductions in the cost of sequencing, WGS 

remains expensive especially in comparison to SNP-arrays and as a result WGS is commonly used as an 

orthogonal line of evidence in support of LOY results found using SNP-arrays.96  

There are also several confounders that need to be addressed with short-read sequencing including 

systemic GC content, PCR and mapping biases that can distort read depths and lead to errors when calling 

aneuploidy.96 When calling mosaic aneuploidy these biases become increasingly confounding. GC content bias is 

caused by a propensity for GC-poor and GC-rich reads to be unrepresented.102 To correct for this, models can be 

fit to the distribution of GC % across all reads and read depth values are adjusted.  Mapping biases are more 

difficult to correct but masking known difficulty regions and ambiguous segments of the genome improves the 

quality of the data.103   
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All of the technologies discussed thus far have either investigated aneuploidy at single-cell resolution in a 

low-throughput manner (karyotyping, interphase FISH) or provided high-throughput aneuploidy calls using bulk 

tissue and millions of cells (SNP-array, WGS). When investigating mosaic aneuploidy, the ideal technology 

would combine the positive aspects of both. Single-cell resolution is necessary for observing low-frequency 

mosaic events. For example, median SNP-array intensities can only detect LOY affecting >10% of cells, as is the 

case with WGS. On the other hand, high-throughput and other scalable technologies are required to expand 

sample sizes and test thousands of individuals in order to derive statistically significant conclusions that are 

representative of the population and are thus generalizable. It is simply not feasible to karyotype thousands of 

cells from hundreds of samples, and bulk technologies cannot detect low-frequency events. However, modern 

advances to single-cell sequencing technologies do provide these desired characteristics to accurately assess 

genome-wide mosaicism at all frequencies.  

 

1.4.5 Single-cell WGS sequencing (scWGS) 

scWGS analyzes the genome of individual cells through improvements to traditional high-throughput 

sequencing and is a powerful method for quantifying genetic mosaicism.104 Advancements in library preparation 

allow for DNA from individual cells to be uniquely tagged with oligonucleotide identifiers, multiplexed with the 

other cells and sequenced together.104  Additionally, cells are subject to whole genome amplification (WGA) 

before sequencing, as each individual cell only contains ~6 picograms of DNA.105 WGA is major confounder in 

scWGS as this DNA needs to be amplified hundreds of times to reach acceptable levels of depth for 

sequencing.104,105 PCR amplification creates biases in read depth across the genome which limits CNV calling 

resolution and can lead to incorrect conclusions when calling CNVs and whole chromosome aberrations.106 

However, even with genomic coverage as low as 0.5-1% per cell, chromosomal copy-number can still be readily 

calculated at similar or greater resolution than is available from array technologies.106 Single-cell WGS 

aneuploidy detection algorithms are similar to those used in bulk WGS, measuring the number of reads mapped to 

a chromosome and comparing this to the genome average for each cell. 
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Aneuploidy studies using single-cell WGS in human skin41, oocytes107 , sperm 108, liver 41, and brain 

21,40,41,56,109 have provided, high-resolution, baseline aneuploidy rates that are much lower than those concluded by 

FISH studies. Knouse et al. found the aneuploidy rates of 2.2% (95% CI 0.3%–7.9%; n=89) in human neurons 

much less than rates exceeding 20% from FISH studies.41 Another study found 0.6% of 1482 neurons were 

aneuploid.40  In the human liver, 4% (95% CI 1.1%–9.9%; n=62) of cells were aneuploid, while in skin cells 0% 

were aneuploid (95% CI 0–6.7%; n=53).41 Rates of aneuploidy appear to be highly over-estimated by FISH, but 

aneuploidy is still quite prevalent.97 As single-cell sequencing technology improves, studies with greater sample 

sizes will continue to provide a higher resolution quantification of aneuploidy in humans.   

 

1.4.6 Single-cell RNA sequencing (scRNA-seq) 

Although not commonly used for detecting SVs, the transcriptome can provide sufficient information to 

successfully karyotype samples.110,111 Single-cell RNAseq is promising as a method to detect aneuploidy as cell-

type can be estimated through gene expression, allowing cell-type specific, single-cell resolution estimates of 

aneuploidy. Additionally, because of interest in gene expression differences between tissues, much more 

scRNAseq data has been produced on a wider range of tissues compared to scWGS. When investigating genetic 

heterogeneity in humans, tissue variety is valuable. Previous studies have shown proof of principle that scRNAseq 

can detect aneuploidy.110 Through the use of combined genome and transcriptome sequencing, Griffiths et al. 

benchmarked an approach called scpoid. In each cell, chromosomes showing consistent expression deviation from 

other cells in the sample are considered aneuploid. The method showed effectiveness when input gene expression 

showed low variability and high depth. Similar methods have been used to study chromosomal instability in 

cancer.112,113 Recently, the scpoid method was improved to utilize allele-specific expression and showed utility 

when detecting aneuploidy in embryos.114 However, in both of these approaches the sex chromosomes are 

removed. That being said, single-cell RNAseq has been used to detect LOY.39 Thompson et al. used a simple 

method in which cells were considered LOY if they lacked expression from all genes residing in the male specific 

Y (MSY). Using this technique, they found 15.6% of 13,418 peripheral blood mononuclear cells (PBMC) were 
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LOY (ranging from 7-61% across all individuals), which is roughly comparable to estimates from SNP-arrays. 

Specifically in B lymphocytes, differential expression analysis between LOY cells (n=277) and normal cells 

(n=2,459) concluded that TCL1A, a known leukemia driver, was overexpressed in LOY cells (Fold charge (FC): 

1.75, p < 0.0001).39 Continuing analyses such as this, while improving the methods and fine tuning them to 

incorporate chrY will help understanding of mechanisms and prevalence of LOY across the human body.  

Despite the utility of inferring DNA from scRNAseq, there are inherent technical issues and biological 

realities that complicate LOY detection. Only 9 male-specific Y genes are commonly expressed outside of the 

testis, and in many cell-types, expression of these genes is difficult to detect.68 Furthermore, total sequenced read 

depth per cell depends on a snapshot of transcriptional output of a cell before sequencing. As result, read depth 

can vary widely between multiple distinct cell types in heterogeneous tissues such as the brain.115 Because of 

variability and dependency on read depth, LOY can be grossly overestimated. To limit false positives, sequencing 

must be deep, and several quality control filters should be in place.116  

 

1.5 Sex chromosome specific challenges in NGS 

Advances in next generation sequencing technologies, and the improved availability of tools used to 

analyze the data have drastically enhanced the reliability, cost and practicality of NGS for use in research and 

clinical settings.117 Despite these advances, accurately mapping highly repetitive and homologous sequence 

remains a challenge for short-read sequencing.118 Repetitive sequences create ambiguities when aligning to the 

reference genome which can cause incorrect mapping, resulting in confounded gene expression estimates, variant 

calling, aneuploidy estimates and other results. Basically, if a read can uniquely map to several locations in the 

genome, accurately predicting the true original location of this read becomes increasingly difficult. Because of the 

shared evolutionary origin of the mammalian sex chromosomes, X and Y share a high level of sequence similarity 

that makes analysis using short-read sequencing more challenging.119 As mentioned above, chromosome Y also 

contains an irregular enrichment of repetitive sequence which invokes mapping ambiguities as well. Additionally, 
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chromosome Y exists in a haploid state, meaning there is 50% less genetic material to sequence compared to 

autosomes, which reduces depth and ability to make accurate variant calls. The increased difficulty of mapping 

chrY has led to its frequent removal from genomic analyses, potentially leading to a gap of knowledge in human 

genetics, evolution and disease.120   

When mapping sex chromosome reads to the reference it is highly recommended to hard mask the 

homologous PAR on the Y chromosome.121 Hard-masking refers to a manipulation of the reference genome, 

where trouble regions in the reference are removed and replaced with “N” . When the PAR is hard-masked on 

either the X or Y, ambiguity is removed in the reference and the PAR is effectively treated as any other diploid 

autosomal region. Without hard marking the PAR on one of the sex chromosomes, reads can map identically to 

either the X or Y, leading to poor mapping quality, reduced coverage and poor-quality variant calling.121 

However, most genes and pseudogenes on the Y have X-linked counterparts of high sequence similarity that are 

not masked in the reference which can result in read mismapping and reduced quality.121 For example, the XTR 

regions retains >98% homology between X and Y and reduced mapping quality and increased technically 

difficulties are observed in this region.121 Several tools have been developed to overcome some of the challenges 

associated with highly repetitive and homologous sequence.122  

 

1.6 Objectives and hypothesis 

Recent findings of widespread LOY in the leukocytes of aging men and its association with risk of 

Alzheimer’s disease raised interest in determining LOY rates in brain tissue. WGS and single-nuclei data from 

brain were available, but because of the haploid nature, low gene count, and general genetic and evolutionary 

complexity of the Y chromosome, many published tools designed to estimate mosaic aneuploidy from WGS data 

remove it before analysis and solely focus on the autosomes. Furthermore, methods to investigate Y chromosome 

aneuploidy using scRNAseq were largely missing from the literature. My overall objective for this thesis was to 

use genomic context, genomic characteristics, and manipulation of sequence alignment files to improve and 
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customize mosaic aneuploidy detection for the Y chromosome. This main objective can be described in three 

main aims:  

i) Improve WGS-based, mosaic Y chromosome detection through the use of genomic characteristics (i.e. 

mappability, GC content) using standardized DNA array-based LOY values as baseline.  

In the past, several studies have used LOY measures from WGS as an orthogonal line of evidence to 

complement and further validate the primary array-based estimates of LOY. This is because DNA is 

commonly extracted from blood samples for array genotyping and LOY is commonly investigated in 

blood. The dataset available required the primary use of WGS to detect LOY in brain samples. 

Therefore, the first objective was to implement strict quality control and the use of mappability and 

GC content to reduce technical variation and improve the biological LOY signal in blood, cerebellum, 

and cortex samples. Paired WGS/SNP-array data was used as a baseline.   

 

ii) Develop a pipeline for filtering and estimating individual cell LOY using low-depth single-nuclei 

RNAseq. 

The transcriptome has been shown to effectively detect aneuploidy in single-cells. The objective was 

to develop a pipeline to reliability detect LOY using single-nuclei RNAseq. The pipeline had to 

overcome low Y-linked gene expression, dropout, and highly variable single-nuclei expression levels 

through the use of aforementioned genomic characteristics, in addition to single-cell sequence 

alignment file manipulation.   

iii) Determine cell-type specific rates of LOY in the brain.   

The transcriptome of single-cells has been shown to accurately predict cell-type. Using cell-type 

information inferred from gene expression, my objective was to i) find evidence of LOY in single-

nuclei in the brain and, ii) determine the rate of LOY in brain cell-types (i.e. microglia, 

oligodendrocytes, astrocytes and neurons.) 
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My main hypotheses are as follows: 

i) Filtering regions of high homology, high repetition and abnormal GC content will improve the overall 

accuracy of mosaic loss of chromosome Y estimates.   

ii) As a result of higher turnover rates and rates of replication, glial cells have higher rates of LOY than 

do neurons.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 
 

2.  Improving WGS-based mosaic loss of Y detection  

Previous study of mosaic loss of chromosome Y (LOY) has largely been confined to blood tissue.39,47,48,53 

However, given links between Alzheimer’s disease (AD) and aneuploidy in the brain36, and recent associations 

between LOY in the blood and AD47, I wanted to determine the prevalence of LOY directly in human brain tissue. 

In order to make reliable conclusions on LOY rates in the brain, existing WGS LOY detection methods needed to 

be tested and improved. Accordingly, a large portion of the effort in this chapter was devoted to improving the 

ability to detect mosaic aneuploidy from WGS data, specifically in the context of chromosome Y. The existence 

of individuals with both SNP-array and WGS data, and/or multiple WGS runs allowed for in-depth quality 

control, providing confidence in our method and findings. In this chapter I used both SNP-array and WGS data to 

estimate mosaic loss of chromosome Y (LOY) in male whole blood, dorsolateral prefrontal cortex, and 

cerebellum tissue from the ROSMAP consortium.  

2.1 Methods 

2.1.1 ROSMAP cohort and data summary 

The Religious Orders Study (ROS) and Rush Memory and Aging Project (MAP; together referred to as 

ROSMAP) are longitudinal studies aimed at characterizing the clinical and pathological features underlying 

aging, cognitive decline, and neurodegenerative disease. ROS began in 1994 and enrolls nuns, priests, and 

religious brethren from across the United States. MAP began in 1997 and enrolls individuals from across 

northeastern Illinois. As of May 29th, 2020, ROSMAP has enrolled 3646 individuals (72.7% female), 62.4% were 

diagnosed with mild cognitive impairment, 29.4% were diagnosed with dementia and 53.2% of all enrolled 

individuals have deceased. Although two separate studies, clinical follow-up procedures and sample collection are 

standardized and made available for joint analysis. At time of enrollment, both studies conduct a clinical 

evaluation of each individual and take blood samples. Blood sampling continues annually for all MAP 

participants, and several hundred ROS participants. Upon death, tissue is extracted from multiple brain regions, 

the spinal cord, nerve, and muscle. The brain is also autopsied and quantitively evaluated for neuropathology by 
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board-certified neuropathologists. Clinical and neuropathological characterization of these cohorts has been 

reported elsewhere (Bennett et al., 2018).123 A summary of all information collected on the ROSMAP cohort is 

provided in De Jager et al., 2018; and is available at www.radc.rush.edu.124 

The data used in this chapter includes 1081 WGS samples (male (M) = 362, female (F) = 719; Illumina 

HiSeq X), and 1280 samples genotyped via SNP-array (M = 306, F = 974; Affymetrix Human SNP6.0). DNA 

used for the ROSMAP WGS was extracted from whole blood and several brain regions. Only tissues with a 

sample size greater than 50 (i.e. dorsolateral prefrontal cortex (DLPFC), whole blood and cerebellum) were 

analyzed. Of all WGS samples, 363 (M = 129, F = 234) were sampled from whole blood, 458 (M = 152, F = 305) 

were sampled from the DLPFC and 258 (M = 78, F = 180) were sampled from cerebellum. Because of our interest 

in chromosome Y, we focused on male samples and female samples were primarily used for quality control. In 

total, 40 male samples had paired WGS and SNP-array data from whole blood. Additionally, 58 DLPFC and 18 

cerebellum WGS samples had overlapping whole blood array data. A visual summary of the data used in the 

project is summarized in Figure 2.1.  

 

2.1.2 WGS processing 

WGS sequencing and raw sequence file quality control reported below was completed and reported by De 

Jager et al. (2018).124 Details regarding WGS preparation and sequencing have been included in Appendix 5.  

Figure 2.2 summarizes the methods used in Chapter 2. The mean depth across all samples was 39.3 (range: 29.0-

64.1; Appendix 2.1), mean depth across the MSY was 19.5 (range: 7.9-29.7). Between each tissue, genome-wide 

sequencing depth was not significantly different (Appendix 2.2).   

All read depth collecting from WGS BAM files was completed by Badri Vardarajan. In the autosomes, 

read depth values were collected from high mappability regions for individuals of European ancestry specified in 

the high mappability BED file from the Genome in a Bottle Consortium (GIAB; NA12878, version NISTv3.3.2, 

build hg37). GIAB high mappability regions are segments of the genome where variants can consistently be  

http://www.radc.rush.edu/


29 
 

  

Figure 2.1 Overview of the ROSMAP cohort data used for LOY quantification using SNP-array and WGS 

technologies.   Whole blood samples from males and females were analyzed through WGS (males = 132) and 

Affymetrix Genotype Array 6.0 (males = 306). Paired data from both WGS and SNP array was available for 40 

males. Samples from the dorsolateral prefrontal cortex (males = 155, females = 305) and cerebellum (males = 

78, females = 180) were analyzed through WGS. Single-nuclei RNA sequencing (snRNA-seq) was performed on 

DLPFC samples from 24 males and 24 females (detailed in Chapter 3). In general, female samples were used for 

quality control. 
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Figure 2.2 Overview of data and methods used for SNP-array and WGS LOY quantification.  Flow-

chart describing all steps in analysis of 1081 WGS samples (Illumina HiSeq X) and 1280 genotyped samples 

(Affymetrix SNP6.0 array). Green boxes highlight work that was completed by others. Figures have been 

referenced where relevant. 
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mapped with high confidence. These regions have been benchmarked using extensive deep sequencing using 

multiple platforms and represent regions of the genome where depth measurements are reliable. GATK 

DepthOfCoverage was used to compute read depth in each genomic window and included reads passing minimum 

mapping quality (>20) and normalized base quality (> 0) filters. To reduce the effect of PCR artefacts and to 

conserve computation resources, regions with excess coverage were downsampled to 5000. GIAB high 

mappability regions are of variable length (range: 1-102,317bp). Window length filters were applied to GIAB 

high mappability regions, limiting the analysis to regions of length >= 998, as small windows introduce unwanted 

variability. In the GIAB high mappability file, chromosome Y is not included. During initial analyses we used the 

average read depth across the entire Y chromosome, effectively treating the Y as 1 large, 59MB genomic window. 

However, given our primary interest in the Y, to improve read depth resolution and ability to filter, read depth was 

collected in uniform 998 bp bins across chromosome X and Y.  

 

2.1.2.1 Mappability and blacklist filter 

To further improve our ability to estimate mosaic whole chromosome copy number I filtered genomic 

regions on mappability score (S; also referred to as alignability). The Center for Genomic Regulation (CRG) 

alignability track provides scores on how uniquely k-mer sequences align to regions in the genome. For example, 

in the case of the 50mer CRG track, a sliding window of 50bp is applied to the reference genome and each 50bp 

kmer is mapped back to the genome using the The Genome Multitool (GEM) mapper aligner. Up to 2 mismatches 

are permitted. For each 50bp window, a mappability score is produced (S = 1 / number of matches to reference 

genome). Therefore S = 1 represents a unique 50bp match across the entire genome (with two mismatches 

permitted), whereas 0.5 represents two matches genome wide and so on.  Since the window slides to each base in 

the reference genome, each base pair is given a mappability score (S). Using the S of each base the average 

mappability of genomic regions can be computed. I used a mappability threshold with the goal of eliminating low-

confidence repetitive regions and regions of high sequence homology that could contribute to technical noise and 

variability when detecting mosaic aneuploidy. This is particularly useful when investigating the sex 
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chromosomes, given their shared sequence homology. Additionally, windows overlapping Duke Excludable 

Regions and DAC Blacklisted Regions were removed. These files contain regions that have known high multi-

mapping to unique mapping ratios and high rates of signal artefacts across multiple cell lines and experiments. 

Many of the excluded regions do not overlap with genome-wide mappability filters, and ENCODE recommends 

the use of blacklisted regions, alongside mappability for genome analysis.103  

 

2.1.2.2 GC content filter 

Genomic regions were also filtered based on GC content in an effort to reduce GC content bias and 

smooth the read depth signal. GC-rich and GC-poor reads tend to be underrepresented by Illumina sequencing, 

which can cause unwanted read depth variability. Ideally, GC content bias is accounted for at the sequence read 

level.102 However, given the large amount of WGS data used for the project, its storage on external collaborator 

servers, and the extensive computational resources required to perform this correction, we decided to threshold 

GC content by genomic region. I input the hg19 reference genome into the nuc tool from the bedtools package125 

to calculate the % of guanine and cytosine in each genomic window. For each genomic window, the average GC 

content was used in tandem with mappability score and blacklist membership to filter poor quality regions, 

enriching for representative regions of the genome. 

 

2.1.2.3 Relative read depth and estimated copy number 

To estimate the mosaic loss or gain of each chromosome in each sample we used a metric we call relative 

read depth (rRD). Relative read depth values for each chromosome in each individual were computed as the ratio 

between the mean read depth of all passing genomic windows across the chromosome and the mean read depth 

across all passing genomic windows genome-wide. Simply, the average read depth across each chromosome is 

compared to the average read depth across the genome. Given the non-uniform distribution of bins in the 

autosomes, a weighted mean based on bin length and median window read depth was used when calculating 
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chromosomal and whole genome depth. In order to prevent auto-normalization, the chromosome undergoing 

normalization was excluded from the median whole genome read depth calculation. rRD was converted to 

estimated copy number (CN), by multiplying rRD by 2. This normalizes read depth values to their expected 

biological ploidy (Figure 2.3). 

 

2.1.2.4 Finding GC content and mappability thresholds 

The goal of thresholding WGS depth windows on GC content and mappability was to reduce unwanted 

technical variation and improve correlation with a standardized, orthogonal data source (i.e. SNP-array). To find 

the optimal combination of thresholds I used two main measures: i) Median absolute deviation (MAD) of 

estimated copy number across the autosomes in all samples (Figure 2.4) and,  ii) the correlation between WGS 

(estimated copy number) and SNP-array (mLRRY) in samples with overlapping data (Figure 2.5). 

When we initially analyzed relative read depth data across the autosomes without filters, we observed 

high variation and significant deviation from expected values (Figure 2.3A). Although we saw many samples 

with reduced Y chromosome copy number, several autosomes showed similar patterns of high variability making 

biological conclusions difficult. We hypothesized that a majority of the observed autosomal variation was likely 

technical and could be removed through the selection of high confidence genomic windows that passed GC filters 

and mappability filters. To test this, I applied a combination of GC filters and mappability filters to all samples 

and calculated the MAD of the estimated copy number of each chromosome in each sample (Figure 2.4). Using 

mappability filters from 0 to 1 in 0.1 increments, and GC content filters of 0-1, 0.1-0.9, 0.2-0.8, 0.3-0.7, 0.3-0.6, 

0.35-6, 0.35-0.55, 0.4-0.55, 0.45-0.55, it was clear that autosomal CN variability was minimized at GC filters 

0.40-0.55 and 0.45-0.55 and mappability filters 0.8 and 0.9. Increasingly strict filters reduced variability until too 

much information was lost and copy number variability was increased. When I applied the 0.45-0.55 GC/0.9 

mappability filter (referred to as optimal filter), the autosomal variance was removed and the LOY signal 

remained, which gave us confidence in the method (Figure 2.3B).  
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Figure 2.3 Estimation of chromosomal content in three tissues across 364 elderly males using WGS. 

Estimated copy number (CN) is calculated for each chromosome in each sample by dividing chromosomal depth 

by total genomic depth (Methods – Chapter 2) and multiplying by ploidy. Autosomes have an expected copy 

number of 2, and the sex chromosomes have an expected copy number of 1. Each panel represents an additional 

filtering step within the WGS ploidy detection algorithm which is described in the bottom left corner of each 

plot. A) Unfiltered ploidy estimation. As expected, the CN for diploid chromosomes is approximately centered 

at 2, and haploid chromosomes are approximately centered at 1. Without filtering autosomal variance is high 

which makes biological and statistical conclusions difficult. Additionally, chromosome Y ploidy was 

significantly below 1 largely because of mapping errors and technical noise (Figure 2.6). B) Mappability (>0.9) 

and GC content filters (0.45-0.55) were added and technical variability was reduced. C) Estimated copy number 

was further normalized by batch/tissue correcting using the peak of the kernel density function. After correction, 

the reduction of Y ploidy remains visible.  
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Figure 2.4. Filtering genomic windows using mappability and GC content reduces the variability of copy 

number estimation across the autosomes. For each combination of mappability and GC content window filters the 

estimated copy number (CN) was calculated for each chromosome in each sample. For each combination, the median 

absolute deviation (MAD) was applied to the autosomes. Restricting windows to GC 0.4-0.55 and mappability values 

greater than 0.9 provided the least overall variability. Reducing copy number variability across the autosomes, 

provides confidence in chromosome Y ploidy estimates.  

 

Figure 2.5. Filtering genomic windows using mappability and GC content does not reliably improve correlation 

between WGS and SNP-array mosaic Y chromosomal copy number estimates. For each combination of GC content 

and mappability filters, estimated chrY CN from WGS and mLRRY values from SNP-array were tested for correlation 

(Pearson’s). Correlation between the two data sources is high but ranges between 0.90-0.93 in an unpredictable pattern. 

As data is filtered mores strictly and information is lost, correlations tend to drop. Nevertheless, correlation between 

array and WGS is high, giving us confidence in the WGS-based copy number estimation methods.  

 

MAD 

Pearson correlation 
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Next, the same combination of filters was applied to samples with overlapping array and WGS whole 

blood data. My hypothesis was that effective filtering enriched the true biological reality and would improve the 

correlation between the two independent technologies. Given that SNP-array LOY detection is largely 

standardized, filter combinations were applied to WGS samples. The most effective improvement in correlation 

between WGS and SNP-array LOY came before filtering when array copy number probes were removed from the 

analysis (R=0.84 to R=0.89). After this, correlation between technologies was high using all filters (range: 0.89-

0.93), but GC and mappability filters did not increase correlation in a reliable pattern. The 0.40-0.55 GC/0.9 

mappability filter did display the highest correlation (R=0.935). Ultimately, I chose the 0.45-0.55 GC/0.9 

mappability filters was as they resulted in the most stable results amongst the autosomes in addition to high 

correlation with array data. When applying the optimal filter, 593 chrY windows (2.6%), and 35,732 (7.2%) 

autosomal windows remained. These genomic windows were used to calculate rRD (Appendix 2.3). When 

investigating Y depth in individual samples I commonly used the 0.40-0.55 GC/0.9 mappability filter as it 

provides 1784 windows, as opposed to 593 windows. This increased coverage allows for improved detection of 

sequencing abnormalities, and large structural variants when visually inspecting.  

 

2.1.2.5 Visual inspection and quality control of Y chromosome WGS data  

Additionally, depth across chrY was investigated manually in each sample. For each male sample, I 

produced panels consisting of increasingly stringent filtering (Figure 2.6A). In each case I looked for 

abnormalities, large structural variations, and poor-quality depth data. When viewing these panels, the importance 

of mappability filtering was apparent. Consistent, lowly mapped regions in the MSY, XTR regions, and highly 

mapped regions near the centromeres are removed by the 0.9 mappability filter, allowing for a more accurate 

measure of depth (Figure 2.6B). After manual curation, 4 samples were removed because of highly variable, 

poor-quality data across all chromosomes (SM-CJEHE, SM-CJEJ6, SM-CTEE3, SM-CTEE5, Appendix 2.4). 

Furthermore, 6 chrY duplications were discovered, however in each case when the duplication was masked, the 

estimated chromosomal CN was not significantly affected.  



38 
 

 

  

Figure 2.6A. WGS genomic window filtering steps in LOY blood sample. A visualization of the genomic window 

filtering process. Each panel displays read depth across chromosome Y at increasingly strict filtering steps for a single 

sample (whole blood) categorized as LOY (CN = 0.363). The gray windows represent notable genetic regions on Y 

chromosome. Beginning on the left, these include PAR1, XTR, the centromere, and the heterochromatin region which 

continues for ~28 million bases. The red line represents the median depth across all bins passing filters. A-B) Raw data 

and blacklist filtered data. High variability especially near the centromere and on the q arm. C) The mappability filter is 

effective at removing low quality information. D) The GC content filter removes a significant proportion of the data but 

smooths for GC bias and reduces technical variability. This process was repeated for each sample.  
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Figure 2.6B. WGS genomic window filtering steps in normal ploidy dorsolateral prefrontal cortex (DLPFC) 

sample. Example of the filtering process on a normal ploidy sample. Bottom, the 0.4-0.55 GC content filter was used to 

visually inspect for large structural variation as 1784 windows are used instead of 593 which improves resolution.  
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2.1.2.6 Ploidy correction using peak of kernel density estimate 

I further normalized CN values in each tissue/chromosome to adjust for tissue specific technical variation 

and sequencing depth biases. In a method similar to that applied to array mLRRY values (See SNP-array 

processing), estimated CN values were shifted by the difference between the peak of the local regression median 

and expected chromosomal ploidy. Using the density function in R, I applied a kernel density estimate (using the 

Shether-Jones bandwidth) independently to the CN values from each chromosome/extraction kit combination 

(Figure 2.7; Appendix 2.5). In each case CN values were shifted by the difference between the peak of the 

density distribution and expected ploidy (2 for autosomes, 1 for sex chromosomes in males). Copy number peak 

density normalization reduced variation amongst the autosomes (MAD before = 0.0106, MAD after = 0.0065). 

 

2.1.3 SNP-array processing 

All sample preparation and genotyping was completed by the ROSMAP consortium. DNA from ROS and 

MAP subjects was extracted from whole-blood or lymphocytes and was genotyped using the Affymetrix Genome-

Wide HumanSNP Array6.0 platform (Santa Clara, CA) at the Broad Institute’s Center for Genotyping (n=1280). 

All raw genotyping data (Affymetrix probe results files; CEL) were provided by download from Columbia 

University (Badri Vardarajan). Using provided CEL files, I used Affymetrix Power Tools bundle (v1.20.0) and 

PennCNV-Affy package to normalize, extract probe signals, generate cluster files, call genotypes  and ultimately 

calculate Log R Ratio (LRR) values (Figure 2.2). Specifically, I used the Birdseedv2 algorithm to call genotypes, 

and used the  normalize_affy_geno_cluster.pl program (PennCNV) to generate LRR values. Samples with 

contrast quality control values < 0.40, median absolute pairwise difference values > 0.35, call rate < 0.95, or 

conflicting sex determination were removed, as per manufacturer instruction. Birdseedv2 files were converted to 

PLINK format (http://zzz.bwh.harvard.edu/plink/) for SNP QC. SNP probes with genotype call rates < 95%, 

minor allele frequency < 0.01, mishap test < 1e−9, and Hardy-Weinberg P < 0.001 were removed. After quality 

control, a total of 306 male and 974 female samples, 757,091 SNP probes and 908,043 copy-number (CN)  
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Figure 2.7.  Example of chr21 density 

kernel ploidy correction in dorsolateral 

prefrontal cortex samples.  Density 

kernel ploidy correction was completed 

separately for each 

chromosome/extraction kit combination 

to normalize depth distributions to the 

expected ploidy of a chromosome. In this 

example chr21 is being corrected in a 

dorsolateral prefrontal cortex (DLPFC) 

sample. A) First the QIAamp batch is 

processed. The peak of the density kernel 

is shifted to the expected ploidy. B) The 

process is repeated for the 

AllPrepUniversal batch which has a 

different distribution. C) When the data is 

merged, copy number is centered around 

2, however the distribution of the data is 

maintained. The distribution of CN values 

between kits is normalized. 
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probes were included for further analysis. In total from chromosome Y this included 8582 CN probes and 

271 SNP probes.  

Log R Ratio (LRR) in a given chromosome or region was used as a marker of chromosomal content. The 

Affymetrix Power Tools bundle outputs the LRR as log2(Robserved/Rreference), where Rreference is the probe intensity in 

a reference population of HapMap individuals. On the Y chromosome, 8797 probes (Affymetrix Genotyping 

Array 6.0) are located in the male-specific Y region (MSY), and outside the pseudoautosomal regions, PAR1 

(Y:10,001–2,649,520; hg19) and PAR2 (Y:59,034,050–59,363,566; hg19). Each SNP is represented by a pair of 2 

probe sequences, one for the A and B alleles. Each pair of SNP probes is replicated at least 3 times on the array. 

CN probes are non-polymorphic sequences represented by a single probe sequence. As a result, CN probe 

intensity values are more variable (Appendix 2.6) and have a different distribution than the SNP probes. Further, 

previous studies have standardized the use of SNP probes to set mosaic loss thresholds. For these reasons, I 

exclusively used SNP probes to determine Y loss. I further filtered SNP probes on chromosome Y using cohort 

summarized mLRR values. The goal was to remove low-confidence probes that showed significant LRR 

variability and/or consistent outlier means across the cohort. Probes with cohort-wide LRR standard deviation 

(SD) outside the 99th percentile (>0.806) and/or LRR mean outside the 99th percentile (>0.07) or 1st percentile (<-

0.302) were removed (Figure 2.8). These filters remove 7 probes, bringing the final Y chromosome SNP probe 

count to 264 (Appendix 4). The median LRR value from these 264 Y chromosome probes is referred to as the 

mLRRY and is the primary LOY metric derived from SNP-array data.  

Previous LOY studies have found that an uncorrected mLRRY value distribution can shift in the positive 

direction as an effect of the Affymetrix normalization process and its lack of compensation for unexpected, 

frequent aneuploidy. To correct the normalization bias, mLRR-Y values were corrected as in Forsberg et al. 

(2019).126 A local regression median was calculated using the density function in R, using the Sheather and Jones 

(SJ) kernel density estimator.  The blue density lines in Figure 2.9A and B show the local regression median over 

the cohort chrY CN distribution while the red line in Figure 2.9A denotes the peak of the local regression median 

(LRRY= 0.025186). This value was subtracted from all mLRRY values, shifting the local regression median to 0.  
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Figure 2.8. Location and summarized log R ratio characteristics of Affymetrix SNP6.0 male-specific Y probes 

SNP-probes in the male-specific chrY region (MSY) were filtered using summarized mLRR values. The x-axis 

represents chrY coordinates (hg19), and each point represents a SNP probe. The goal was to remove low-confidence 

probes that showed significant LRR variability and/or outlier means. Probes with cohort-wide LRR standard 

deviation (SD; top panel) outside the 99th percentile (>0.806) and/or LRR mean outside the 99th percentile (>0.07) or 

1st percentile (<-0.302; bottom panel) were removed. These filters removed 7 probes, bringing the final Y 

chromosome SNP probe count to 264.  
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Figure 2.9. Correcting mLRRY values and statistically determining threshold of low-level mosaicism. LOY 

proportion each sample was estimated using the median log R ratio (mLRRY) across all SNP probes located in the male-

specific region of chromosome Y (MSY, Y: 2,694,521–59,034,049, hg19).  Samples were genotyped using the 

Affymetrix™ Genome-Wide Human SNP Array 6.0 which includes 906,600 SNP probes, 271 of which are located within 

the MSY (264 pass QC). mLRRY values around 0 represent the expected ploidy state. Negative mLRRY values represent a 

reduction in chrY genomic content and therefore are a proxy for mLOY. The left panel shows uncorrected mLRRY values 

for all 306 male ROSMAP samples. The Affymetrix normalization algorithm tends to overcorrect mLRR values on the Y 

as chrY aneuploidy is not adjusted for, hence the distribution is shifted to the right. To correct this bias, data was processed 

as in Forsberg et al. A-B) Briefly, the peak of the local regression median was calculated and is represented by the red line. 

The difference between the peak and 0 was subtracted from all mLRR values, shifting the distribution, and normalizing the 

values to 0. The dotted lines shows the limits of the 99% confidence interval of the experimental error. C) Because gain of 

Y mosaicism is rarely observed, the distribution of values greater than 0 mLRR is used to estimate experimental error. The 

lower 99% CI limit (i.e. -0.082) was used as the minimum threshold when determining low-level LOY mosaicism. 

Simulations and benchmarking by Forsberg et al. suggest this low-level mosaicism represents ~10% of cells without 

chromosome Y.  
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 Because gain of Y mosaicism is rarely observed, previous LOY studies have used the normally distributed 

positive tail of the mLRRY distribution as an estimate of the experimental/technical error distribution. (Figure 

2.9C). The positive tail of this distribution is assumed to occur in the negative direction as well, so the positive 

tail is mirrored to create a complete distribution of experimental error. Values outside of the 99% confidence 

interval of this distribution are considered mosaic gain or loss. Simulations and benchmarking using known 

mosaic rates suggest this threshold represents the lowest confidently detectable level of mosaicism, which 

corresponds to ~10% of cells with LOY.53 The lower limit (i.e. -0.082) was used as the minimum threshold when 

declaring low-level LOY. The dotted lines in Figure 2.9B and C show the limits of the 99% confidence interval 

of the experimental error distribution. 

 

2.1.4 Transformation of mLRRY values and LOY % estimation  

To compare LOY more accurately between genotype array and WGS platforms, mLRRY values were 

transformed into a metric called rounded SNP-array ratio. Because of the high correlation between WGS copy 

number and mLRRY, formulas can be applied to transform mLRRY values onto a normalized scale. Following 

the formulas from Danielsson et al. (2019), mLRRY values were transformed.127 Extensive testing of samples 

with paired WGS, ddPCR and SNP-array data found that mLRRY values can be transformed to a CN equivalent 

using the following formula: Y = (2mLRRY)2, where Y is the rounded SNP-array ratio.127  Further, % of LOY cells 

can be inferred through the following formula: LOY(%) = 100*(1-2mLRRY)2. The LOY threshold at -0.082 

mLRRY is equivalent to 0.889 CN and ~10% LOY. Thresholds of increasing LOY severity were set at mLRRY -

0.15 which is equivalent to 0.812 CN and ~19% LOY, and -0.315 mLRRY, equivalent to 0.646 CN and 35% 

LOY (Appendix 2.7). These thresholds were primarily chosen to compare to previous LOY studies, and the 

values from our analysis are comparable (Table 2.1).  
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2.1.5 Estimating accuracy of WGS ploidy estimation 

In the ROSMAP cohort, 15 individuals were subject to two WGS replicates. In an effort to further 

establish rates of technical variation in our WGS mosaic ploidy detection method, CN values were compared 

between these in-sample replicates (Figure 2.10). In the autosomes, the absolute mean CN difference between 

replicates was 0.0173 (n=15, sd =0.021), while for chrY replicates the absolute mean difference was 0.014 (n=5; 

Figure 2.10B). This suggests that technical variation amongst the autosomes is roughly similar to that observed 

for chromosome Y, and with the exception of chr19 and chrX, CN estimation is highly similar between in sample 

replicate chromosomes.  

Figure 2.10. Fifteen within sample replicates reveal limited variation in WGS copy number estimation in the 

autosomes and Y chromosome.  15 samples (5 male, 10 female) were whole genome sequenced twice, which 

allowed for within sample variance testing of our WGS ploidy detection methods. A) CN was calculated in each 

chromosome in each sample. The values produced represent the absolute differences between the estimated CN in 

replicates. Samples are row clustered. B) The absolute mean difference between replicate chromosomes across all 

15 samples is summarized. Chromosome Y shows a similar within sample deviation to the autosomes. 

Chromosome 19 and the female X show elevated variance across most samples. Dorsolateral prefrontal cortex 

(DLPFC), cerebellum (Cere).   
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Table 2.1  Summary of previous LOY studies using SNP-arrays. 

Study Cohort Sample 

size 

MSY 

probes 

mLRRY LOY 

cutoff 

LOY rate Age range Genotype array platform 

Forsberg et al. 2014 PIVUS 488 1690 -0.154 20.5% 70.7-83.6 2.5M Human Omni Express  
ULSAM 1141 2560 -0.08 14.7% 70 2.5M Human Omni         

Dumanski et al. 2015 PIVUS 488 1690 -0.1182 15.6% 70.7-83.6 2.5M Human Omni Express  
ULSAM 1153 2560 -0.1024 12.6% 70 2.5M Human Omni  
TwinGene 4373 1690 -0.1324 7.5% 48-93 2.5M Human Omni Express   

1323 1690 -0.1324 15.4% 70-93 2.5M Human Omni Express         

Loftfield et al. 2018 UK Biobank 223,338 691 -0.15 1.7% 37–73 Affymetrix UK BiLEVE and Biobank    
223,338 691 -0.4 0.3% 37–73 

 

  
35,627 691 -0.15 5.2% 65-73 

 

  
35,627 691 -0.4 0.9% 65-73 

 

        

Thompson et al. 2019 UK Biobank 205,011 691 −0.046 24.0% 40-70 Affymetrix UK BiLEVE and Biobank        
*used a PAR-LOY method to improve 

sensitivity         

Dumanski et al. 2016 PIVUS 469 1690 -0.1182 21.1% 70 2.5M Human Omni Express  
ULSAM 1138 2560 -0.1024 17.5% 70.7-83.6 2.5M Human Omni  
EADI1 1611 2153 -0.0967 15.4% 65+ Illumina Human610Quad chip         

Grassmann et al, 2019 IAMDGC 12504 608 −0.08 16.4% 60-90 Illumina HumanCoreExome 

        

Vermeulen, 2020 ROSMAP 306 263 -0.082 17.0% 63-102 Affymetrix SNP6.0  

  306 263 -0.15 9.4% 63-102  

  306 263 -0.4 2.3% 63-102  
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2.2 Results 

2.2.1 LOY prevalence and associations 

Although the main goal of this chapter was not to establish phenotypic and/or disease associations with 

LOY, I did perform some association tests of known risk factors to provide additional confidence in my methods 

and data processing pipeline. As expected, mLRRY values were centered around zero and skew in a negative 

direction (s.d = 0.112; Figure 2.9B). Negative values represent reduced Y chromosome content in the blood. 

mLRRY distributions from all other chromosomes did not show negative skew and were centered around 0 

(Appendix 2.8). Consistent with previous reports, we observed a significant negative correlation between age and 

mLRRY (R=-0.24, p=1.8x10-5; Figure 2.11A) and this effect was specific to chromosome Y (Figure 2.11B-E).  

Age at blood draw was not available, so age of enrollment was used under the assumption that genotyped blood 

was sampled near initial enrollment. Because of these assumptions the age/LOY correlation is likely 

underestimated. Unlike previous studies, I was unable to find a relationship between smoking and LOY (“ever”: 

p=0.915, “current”: p=0.232). Although this result is unexpected as smoking is one of the main known risk factors 

for LOY, it can partially be explained by a lag between metadata recording and blood sampling used for 

genotyping. The correlation between smoking and LOY is known to dissipate following smoking cessation, and 

this could be affecting the outcome. 

My main goal in this chapter was to accurately compare and contrast rates of LOY in whole blood and 

brain tissue in an aging cohort. To do this I estimated the prevalence of LOY across the array and WGS cohorts in 

addition to the severity of LOY in each sample. For the SNP-array data I used the lower limit of the 99% CI of the 

experimental error distribution to establish the lowest detectable LOY (from Forsberg et al. 2014), and published 

formulas to convert mLRRY to % LOY cells (Methods; Appendix 2.7).53 In our dataset, an mLRRY value of -

0.082 was the lowest detectable LOY threshold and corresponds to ~10% of LOY cells in an individual sample. 

At this ~10% LOY cut-off, we observed LOY in 52/306 males (17%; mean age = 78.6). Elevated levels of LOY 

affecting >~19% of cells, were observed in 29/306 samples (9.4%; mean age = 80.5; Figure 2.12). These results 

are comparable to LOY studies using similar arrays and similarly aged cohorts (Table 2.1).  
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Figure 2.11. Age is correlated with mLRR exclusively on chromosome Y. The mean intensity log-R ratio (mLRR) is a 

measure of genomic content across a set of probes and is used as a proxy for mosaic aneuploidy. Chromosomes at expected 

ploidy are represented by an mLRR of around 0. A) mLRR values across 264 chromosome Y SNP-probes (mLRRY) are 

significantly associated with baseline age (p=1.8 x 10-5). B-D) Associations between age and mLRR values derived from chr2, 

chr19 and chr21 are not significant. E) mLRR-age associations across all other chromosomes are not significant (p>0.05). Age 

of enrollment was used as specific age at blood draw was not available. 
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Figure 2.12. Summary of mosaic loss of chromosome Y detected via Affymetrix SNP6.0 array for 306 male samples 

from the ROSMAP cohort. Samples are sorted by increasing median log R ratio on chrY (mLRRY), meaning the 

samples with the highest LOY rates in blood are plotted farthest to the left. The dotted line denotes the 99% confidence 

interval of the technical error (Figure 2.9). mLRRY values within the 99% CI are considered normal.  Using the findings 

of previous mLOY studies, mLRRY values at the 99% CI represent ~10% of cells missing chrY. The blue line at -0.150 

represents ~19% of cells missing LOY, and the green line at -0.315 represents ~35% of cells missing LOY (commonly 

referred to as severe loss). Note: mLRRY is commonly used as a continuous variable in the study. 
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WGS estimates of chromosome Y ploidy were distributed around 1 in whole blood, cerebellum and 

DLPFC (Figure 2.13C-D). CN values were normalized to represent biological ploidy and as expected all 

autosomes were centered around 2, the sex chromosomes centered around 1, and in whole blood chromosome Y 

showed elevated variance and a skew towards 0 representing LOY (Figure 2.3). In blood samples, we observed a 

significant negative correlation between age of death and chrY CN (R=-0.3, p= 7.4 x 10-4, Figure 2.17) but not 

age at enrollment (R=-0.1, p=0.26). This suggests that blood samples used for whole genome sequencing were 

likely drawn at a follow up session or at after death at autopsy. Our WGS analysis also failed to find correlations 

between smoking and LOY (p = 0.767, ANCOVA). In the brain, correlation between age and LOY was region 

specific. In the cerebellum, LOY was not significantly associated with age (R=-0.074, p=0.52; Figure 2.17). 

However, to my surprise, in the DLPFC I found a negative correlation between Y chromosome ploidy and age. 

When both DLPFC batches (named by the DNA extraction kit used, i.e. QIAamp and AllPrep) were combined, 

LOY was significantly correlated with age (R=0.13, p= 1.13 x 10-4), however consistent batch specific depth 

distributions caused technical LOY/age correlations within several autosomes. As a result, the DLFPC batches 

were separated and linear models were applied independently (QIAamp; R2=0.1102, p= 2.76x10-5, n=122; 

AllPrep: R2=0.14, p= 0.281, n=20). A 2019 study found a similar negative correlation between age and DLPFC Y 

content using ddPCR, albeit on a much smaller sample size (n=29).  

 

2.2.2 Comparing LOY between tissues and technology 

After quality control and filtering, in samples with overlapping WGS and SNP-array data (n=40) our 

measures of LOY were highly correlated (R=0.92, Pearson correlation; Figure 2.14B; Appendix 2.9). 

Comparable levels of correlation have been found in similar WGS/SNP-array studies, giving us confidence in our 

methods and ability to make comparisons between data types and tissues. However, a correlation this strong was 

unexpected as precise WGS and array blood draw dates were unavailable and were likely taken at different time 

points which should have introduced additional variance.  
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Figure 2.13. LOY is detectable in the blood but not the brain. A-B) Blood samples analyzed for LOY using SNP-

array and WGS show similar distributions and estimates of LOY prevalence. The mLRRY unit was transformed and 

normalized to represent biological ploidy allowing for the ability to directly compare between technologies.  In the 

array dataset, 51/306 (16.6%) of males showed LOY in blood, while 17/123 (13.8%) in WGS showed LOY in blood. 

We observed 1 gain of Y event. C-D) Using the same LOY stringency (10% LOY cells), 0/159 and 0/78 samples 

showed LOY in DLPFC and cerebellum, respectively. Although this does not disprove LOY occurrence in the brain, it 

does provide evidence that LOY is occurring at greater rates in the blood. 
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After standardizing mLRRY values to rounded SNP-array ratio values between the two technologies were 

compared directly (Figure 2.13 and Figure 2.14). Using the minimum detectable LOY threshold at 0.889 CN 

(equivalent to -0.082 mLRRY), LOY was estimated in blood, cerebellum and DLPFC. Using this threshold, 17 of 

123 (13.8%) WGS blood samples and 51 of 306 (16.6%) blood samples from SNP-array were LOY. In 

comparison, 0 of 237 (0%) brain samples showed evidence of LOY (Figure 2.14B and C). Chromosome Y CN 

values from both blood and brain were centered around CN 1, however blood CN showed a negative skew that 

was not observed in the brain (skewness, blood = -3.15, brain = -0.601; Figure 2.15A). Thus, we conclude that 

LOY occurs more frequently and more severely in the blood compared to the brain.  

Comparing rates of LOY between cerebellum and DLPFC tissues was more difficult because of region 

and batch specific differences in sequencing quality and depth variation. However, after normalization, the two 

regions could be compared and Y chromosome CN values were not significantly different between cerebellum 

and DLPFC (p=0.16, t-test, Appendix Figure 2.10). Differences were within the range of experimental error and 

given the coarseness of LOY detection using bulk sequencing, a significant difference could not be detected.  

With that being said, two additional tests suggest LOY may be occurring in the DLPFC at a frequency 

below the detectable threshold (~10% LOY cells) of the genotype array. In addition to the 40 paired WGS/array 

whole blood samples, 74 samples in our cohort were subject to whole blood genotype array and WGS from either 

cerebellum (n=16) or DLPFC (n=58) tissue. Interestingly, LOY measurements between paired array whole blood 

and DLPFC WGS samples were significantly correlated (τ =0.29, p=0.0012; Kendall), while in paired whole 

blood/cerebellum samples they were not (τ =0.22, p=0.24; Kendall; Figure 2.16). It is important to note, sample 

size was much larger for the DLPFC group and correlation directionality was similar. However, it is interesting 

that paired samples with severe Y loss in blood (>20% loss), all corresponded to Y ploidy levels in the bottom 

quartile in DLPFC. Also, as reported above, estimated Y chromosome CN in the DLPFC but not cerebellum, was 

correlated with sample age. Together these results suggest there may be low-level LOY occurring in the DLPFC 

that is not observable given the resolution provided by bulk sequencing. Further in-depth and higher resolution 

investigations (such as those in Chapter 3) are required to confirm this observation.    
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Figure 2.14. Comparing LOY frequency across tissues between WGS and SNP-array. A) Distribution of normalized 

median Log R Ratio (LRR) values (rounded SNP-array ratio) from the male specific Y region (mLRRY) from all 306 male 

whole blood samples. The blue lines represent the 99% confidence intervals (CI) of the distribution of experimental variation 

and represents the lowest detectable mosaic LOY (~10% of cell affected). Each point represents a sample. Each red point has 

overlapping data between SNP-array and WGS in blood, while each green point represents an overlapping sample with 

significant LOY detection in array. B) We found a high correlation between array LOY values and estimated copy number 

(CN) in samples with overlapping data from blood (n=40, R=0.93; Pearson correlation). C) Estimated Y chromosome copy 

number for all WGS samples from blood (n=127), dorsolateral prefrontal cortex (n=159), and cerebellum (n=78). Each red 

point has overlapping data between SNP-array and WGS in blood (n=40). 13.8% of blood samples and 0% of brain samples 

exceed the LOY threshold. These results suggest LOY affects <10% of sequenced cells in the cerebellum and dorsolateral 

prefrontal cortex.  

 

A 
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Figure 2.15. Chromosome Y ploidy distributions are negatively skewed in blood but not brain.  Top, 

Chromosome Y CN values from both blood and brain were centered around CN 1, however blood CN showed a 

negative skew that was not observed in the brain (skewness, blood = -3.15, brain = -0.601). The dotted line highlights 

the expected ploidy of chromosome Y.  Bottom, when distributions are observed by specific tissue the trend remains.  
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Figure 2.16. Estimated Y chromosome ploidy from dorsolateral prefrontal cortex (DLPFC) and whole blood WGS 

correlates with ploidy estimates from paired whole blood SNP-array. 114 samples in our cohort were subject to whole 

blood genotype array and WGS from either cerebellum, DLPFC or whole blood. As expected, paired WGS and array LOY 

measures from blood were similarly ranked between technologies (τ =0.62, p=8.9x10-9; Kendall rank correlation). 

Interestingly, paired array blood and DLPFC WGS were also significantly correlated (τ =0.29, p=0.0012), while paired 

cerebellum samples were not (τ =0.22, p=0.24), although sample size was much smaller (cerebellum/blood, n=16; 

DLPFC/blood, n = 58; blood/blood, n=40).  

 

 

 

 

(whole blood) 
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Figure 2.17 LOY is significantly associated with sample age in both whole blood and dorsolateral prefrontal cortex 

(DLPFC). A) In whole blood and DLPFC tissues age of death is significantly associated with LOY (DLPFC, R=-0.35, 

p=3.9x10-5; whole blood, R=-0.30, p=7.9x10-4;  Pearson). In the cerebellum this association was not found (R=-0.074, 

p=0.52). Consistent batch specific depth distributions caused technical LOY/age correlations within several autosomes. As a 

result, the DLFPC batches were separated. B) The Y chromosome is the only chromosome whose estimated copy number 

correlates with age. Linear models were applied independently to each chromosome in each tissue, controlling for smoking, 

and other confounders. LOY was associated with age in QIAamp (adj R2=0.1102, p= 2.76x10-5, n=122) but not AllPrep (adj 

R2= 0.14, p= 0.281, n = 20). Dorsolateral prefrontal cortex (DLPFC).  
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3. Loss of Y detection in dorsolateral prefrontal cortex tissue using single-

nucleus RNA-seq  

Following the bulk WGS analysis of chromosome Y aneuploidy in the dorsolateral prefrontal cortex, I 

concluded it was reasonable to assume that mosaic loss of Y could be occurring below the detection rate of the 

methods being used. Although LOY rates in the cortex did not exceed the ~10% LOY cut-off required by the 

SNP-array detection method, there were two lines of evidence that suggested low-frequency LOY was occurring 

in cortex cells.  First, we observed an age-associated reduction in Y chromosome ploidy in the DLPFC that was 

not observed in the cerebellum. Secondly, we observed that individuals with high LOY rates in blood (>20% of 

cell affected) tended to also show reduced Y ploidy in cortex, albeit at a lower level. In many cases, bulk 

sequencing does not provide the resolution required to accurately detect low-frequency mosaic ploidy loss, so a 

more in-depth, higher resolution assay was required.  

In theory, single-cell sequencing can provide single-cell resolution evidence of Y nullploidy. The cell is 

the basic unit of life and in the simplest case Y chromosome content can either be detected or not. While single-

cell WGS is ideal for the study of genetic mosaicism, single-cell RNAseq can be leveraged as a proxy for 

genomic content, although the methods to do so are still being developed. Single-cell RNAseq has the additional 

benefit of cell-type annotation. The transcriptomes of single-cells can be clustered and labelled by cell-type using 

known gene markers which allows for cell-type specificity when estimating aneuploid events. The goal of the 

work presented in this chapter was to develop methods to detect mosaic loss of chromosome Y using low-depth 

single-nuclei RNAseq from the dorsolateral prefrontal cortex of elderly men. I used these methods to predict and 

contrast LOY rates by cell-type.   
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3.1 Methods 

3.1.1 Data characteristics  

Sample selection, isolation of nuclei, and droplet-based single-nucleus RNA-seq (snRNA-seq) was 

completed and reported by Mathys et al. (2019).128 A total of 48 individuals were selected from the ROSMAP 

cohort. Individuals were specifically selected to represent an equal proportion of sex, and a range of 

neuropathological characteristics (from no/mild to severe Alzheimer’s disease (AD) pathology). A total of 24 

control samples were selected (12 male/12 female; Figure 3.1). AD-pathology individuals were also balanced 

between sexes. Both control and affected groups were matched for age (median: 86.7 AD-pathology, 87.1 no-

pathology) and years of education (median: 19.5 AD-pathology, 18 no-pathology), as increased age and reduced 

education have previously been associated with increased risk of AD. A summary of the methods used during this 

chapter is provided in Figure 3.2. Detailed methods regarding library preparation and sequencing can be found in 

Appendix 6. 

In total 1.36 billion mapped reads were produced across 70,627 cells (Figure 3.3C).  Total sequencing depth also 

significantly between samples, ranging from over 48 million reads to 2 million. ROS20 was removed from the 

study as sequencing depth, sequencing quality and total number of cells were all reduced (Figure 3.3B-C).  
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Figure 3.1 Overview of dorsolateral prefrontal cortex single-nuclei RNAseq data processing.   

Study cohort details and simplified library preparation/sequencing workflow. 48 samples were selected from the ROSMAP 

cohort (24 AD-pathology and 24 no-pathology individuals; 24 male and 24 female). 80,600 nuclei were isolated and 

sequenced. Clustered cells were cell-type annotated using cell-type markers from Lake BB et al. (2018). 70,627 cells from 8 

major cell types passed quality control, including excitatory neurons, inhibitory neurons, oligodendrocytes, astrocytes, 

microglia, and oligodendrocyte progenitor cells (OPCs). Pericytes and endothelial cells were removed from the analysis. 
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Figure 3.2 Single-nuclei RNAseq LOY detection method overview. A detailed workflow of the single-nuclei RNA-seq 

loss of Y detection method used in Chapter 3. Green boxes denote work done by the ROSMAP consortium (and Mathys 

et al. 2019) , including all sample selection, preparation, sequencing, and demultiplexing. Red boxes denote work done 

using previously curated, filtered expression matrices from Mathys et al. (2019). White boxes denote the workflow I 

developed to improve loss of Y detection sensitivity using raw read filtering. 
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Figure 3.3 Total number of cells and sequencing depth for all 48 dorsolateral prefrontal cortex, snRNA-seq 

samples. A) The number of cells sequenced for each sample varies (mean = 1,471; s.d. 644) and ranges from 297 to 

3,364. Red sample labels are female, blue sample labels are males. B) Total cumulative sequencing reads by cell-type 

across all samples. Sequencing output varies between cell-types, which can complicate intra-cell-type comparative 

analyzes. Approximately 75% of all sequencing reads are derived from excitatory neurons, while only 0.6% are from 

microglia. Brain cell-types are diverse and have vastly different transcriptional output. A total of 1.36 billion mapped 

reads were produced across 70,627 cells. C) Total sequencing depth also varies significantly between sample, ranging 

from over 48 million reads to 2 million. ROS20 (highlighted in red box) was removed from the study as sequencing 

depth, sequencing quality and total number of cells were all significant less than average.    
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3.1.2 Single-nuclei RNA-seq alignment 

 I downloaded snRNA-seq FASTQ files for all 48 samples from the Synapse AMP-AD Knowledge Portal. 

I used the 10x Genomics Cell Ranger (v3.1) package to align reads to the GRCh38 genome and generate the gene 

expression matrix. The reference package that 10x Genomics provides  (includes the reference genome, 

transcriptome, and other data files), restricts analysis to spliced, mature mRNA only. Given the high proportion of 

pre-mRNA in the nucleus, to improve sensitivity, and account for unspliced nuclear transcripts and reads mapping 

to pre-mRNA molecules I created a custom reference package using the cellranger mkref program (Appendix 6). I 

called gene expression counts using the Cell Ranger count  program. Cell Ranger count performs sequence 

alignment, quality filtering, cell barcode counting and unique molecular identifier counting (single-cell expression 

counts). I input FASTQ files were into the program, and cell-level gene expression matrices and binary alignment 

map files (BAM) were output, both of which were used downstream (Appendix 6).  

 

3.1.3 Split sequence alignment files by cell 

 Cell Ranger count produces read alignment files or BAM files (aligned to GRCh38) for each sample. 

These files contain all reads for all cells by sample. I split alignment files into cell-specific alignment files using 

bamCleave (https://warwick.ac.uk/fac/sci/systemsbiology/staff/dyer/software/bamcleave/). 10x Genomics’ library 

preparation provides each cell with a unique cell identifier and bamCleave separates reads using these identifiers 

into individual BAM files.  Cell IDs that passed quality control in the already published processed Seurat object 

were kept, and the rest were removed (see Expression quality control). This allows for an increasingly sensitive 

analysis as cell-specific, raw reads can be observed without strict Cell Ranger count filtering. On the contrary, it 

also means more false positive reads and PCR artefacts are to be included in the analysis, as the detailed, 10x 

Genomics specific, Cell Ranger filtering algorithms are bypassed.  For this reason, I employed my own read 

filtering process based on mappability, read quality, false positive peaks, and alignment statistics. 
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3.1.4 Mappability, problem region and blacklist filtering  

First, I filtered reads on standard mapping quality and sequencing quality metrics and counted and stored 

using SAMtools. Reads were counted genome-wide, and on the X and Y chromosomes. As with previous 

analyses, the Y chromosome search was confined to the male-specific region (MSY) whereas the X chromosome 

was confined to the non-PAR X region. Unmapped reads and reads with less than perfect mapping quality (255) 

were filtered. The details of all passing X and Y reads were stored for further processing (Appendix code).   

Next, I filtered reads based on mappability score. As in Chapter 2, the Y chromosome reference genome 

was split into 1000bp windows. Using the GEM mapping tool, a mappability score was produced for each 

window across the GRCh38 reference.122 Reads overlapping multiple windows were assigned proportional 

mappability scores based on their window membership. Reads within genomic windows exceeding a 0.9 

mappability score were kept (Figure 3.4A). Reads with reduced mappability are more likely to be 

errant/ambiguous mapping events. The mappability filter removed 82% of female Y reads (which we assume are 

false positive evidence of the Y chromosome) and 17% of male Y reads. When applied to the X chromosome, the 

mappability filter removed 11.4% and 11.6% of female X and male X reads, respectively, suggesting that 

errant/mis-mapped reads are being removed at a greater rate than true reads.  Additionally, I removed reads within 

ENCODE mappability blacklist regions. 

I applied additional filters to X and Y reads based on read alignment statistics provided by the STAR 

aligner. The number of mismatches (Nm) and alignment score (AS) metrics were used to further select high 

confidence reads (Figure 3.5). The AS is an internal measure of read mapping quality assigned by the STAR 

aligner. Alignment gaps, mismatches, and other differences from a read mapping perfectly to the reference 

genome reduces the alignment score.  Nm refers to the specific number of base differences between the aligned 

read and the reference genome. Nm and AS distributions were considerably different between male and female Y 

reads (Figure 3.5A-B). Reads with AS score greater than 85, and Nm less than 4 (< 4 mismatches) were retained. 

In total, when combined with mappability filters, I removed >98% of all female reads and just 33% of male reads 

(Figure 3.5C).  
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Figure 3.4 Effect of the mappability filter on the sex chromosomes in male and female samples. Top) Histogram of  

the mappability score given to Y chromosome reads in male and female samples. Male Y reads are concentrated in highly 

mappable, unique windows of the genome, whereas female Y read mappability is uniformly distributed. At a mappability 

threshold of 0.9, 82% of male reads were retained compared to 17% of female reads. Bottom) Histogram of X 

chromosome read mappability scores for male and females. Mappability distributions are similar between male and 

female samples, and the mappability threshold of 0.9 removes a similar percentage of reads from each sex (male = 11.6%, 

female = 11.4%).   
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Figure 3.5 Number of alignment mismatches and alignment score further filter errant mapped reads. Reads were 

further filtered using two alignment metrics: alignment score (AS) and number of mismatches (Nm). A) Histograms of Y 

chromosome read AS in male and female samples. The alignment score (AS) is an internal measure of alignment 

assigned by the STAR aligner. Alignment gaps, mismatches, and other deviations from a read mapping perfectly to the 

reference genome reduces the alignment score. Male AS are concentrated near 100, whereas female AS are more variable 

and commonly below 90. Reads with an AS greater than 85 were retained. B) Histogram of Y chromosome read 

alignment mismatches (Nm). Mapped female Y reads have many more mismatches from the reference genome than male 

reads. Reads with less than 4 mismatches were retained. C) After applying mappability, alignment score, and mismatch 

cut-offs, >98% of female reads were filtered. 33% of male reads were filtered.  
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Lastly, I removed reads from regions I have called “problem regions”, which are derived from peaks of 

mismapping Y chromosome reads in female samples. In all female samples the locations of Y chromosome reads 

were piled up across Y chromosome coordinates. Genomic windows of 1000bp that contained >10 female Y reads 

within intergenic regions were removed in both male and female samples (Appendix 3.1). The assumption was 

that these false positive mapped reads are located in difficult mapping regions of the Y that are not removed by 

the current filters. These regions likely exhibit mapping difficulties in males and removing these regions should 

disproportionately remove technical noise and confounding reads. I found that most female Y mapping peaks 

were located within repetitive DNA elements, such as Alu SINE elements (Appendix 3.1).   

 

3.1.5 Expression quality control 

 In addition to processing and aligning the fastq files locally, I also used the raw expression matrix 

dataset containing gene expression values for 80,660 cells provided by Mathys et al. (2019) (Figure 3.2).39 The 

provided dataset also contained cell-type and sub-cluster annotation for each cell (Figure 3.1 and Appendix 3.2). 

Because this dataset had been published and peer-reviewed I used these cell-type annotations instead of 

clustering, deciding on cell markers and determining cluster cell-type myself. However, I did apply custom 

quality control measures to each cell in the raw dataset to better suit the LOY detection problem. As per published 

single-cell pipelines, I filtered cells based on low read depth, low detected gene count, and/or a high proportion of 

mitochondrial gene count. Each of these metrics are indicative of empty droplets (cells lacking a unique 

oligonucleotide bead), low quality sequencing, and dying or apoptotic cells. In contrast, cells with abnormally 

high gene counts were also filtered as they may represent doublet droplets (cells with two or more oligonucleotide 

beads). I adjusted some of these cutoffs to filter cells more stringently with reduced total expression, as sufficient 

expression is required to accurately predict Y nullploidy. Specific QC steps are detailed below. 

 

i) Library complexity – cells with fewer than 350 expressed genes and greater than 4500 expressed genes 

were removed.  
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ii) Sequencing depth – cells with fewer than 800 total unique gene counts were removed.  

iii) Mitochondrial gene expression – cells with greater than 15% of total read counts derived from 

mitochondrial genes were removed.  

iv) Gene expression – genes showing in expression in less than 3 cells were removed.  

 

 After QC, 48,479 cells (male = 22,484) remained with a median value of 1,474 counts per cell. A total 

of 17,775 genes were represented in the dataset. All single-cell calculations were completed using the R toolkit 

Seurat (v3.1; http://satijalab.org/seurat/). Once cells and genes were filtered, I log normalized expression counts 

and multiplied them by a scale factor of 10,000 using the Seurat NormalizeData function. I then scaled data so 

mean expression of each gene across all cells was equal to 0 and expression variance of each gene across all cells 

was 1 using the Seurat ScaleData function. Scaled data was used for clustering and cluster visualization.  

 

3.1.6 Methods for declaring loss of Y cells  

When using single-cell RNAseq to detect Y chromosome nullploidy, the least ambiguous situation would 

be to observed a complete lack of expression from the MSY region of a single-cell, in addition to expected gene 

expression rates and read depth across the remainder of the genome. In this hypothetical situation, a cell is 

transcriptionally normal apart from the absence of Y-linked gene expression. Further confidence in this LOY call 

could be made if cells of the same cell-type with similar total expression also showed stable Y chromosome 

expression in most cases. However, the inherent problem of using RNA as a proxy for DNA, especially when 

investigating chromosome Y, is the underlying possibility that the Y chromosome genes are not biologically 

necessary in that cell type, such that they not being expressed or are being expressed at extremely low levels and ( 

and hence, are not detected/sequenced). To limit the confounding effect of read depth on LOY calling, I confined 

analysis to specific quantiles of read depth. This way cells being compared had comparable upper and lower limits 

of total expression and any biases would be systemic biases (i.e. shared amongst cells being tested).  
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However, after all the filtering and QC steps, LOY calling can still be difficult and not entirely obvious. The 

observation of frequent low-level Y chromosome expression in female samples shows that some small proportion 

of mapped Y chromosome reads are false positives (Appendix 3.3). On average, 1 of every 800,000 female 

filtered reads per cell was located on the Y chromosome. These reads likely consist of PCR artefacts, mis-mapped 

reads derived from highly similar sequence on the X chromosome and other sources. The existence of these false 

positives complicates nullploidy detection and increases false negative LOY calls. To deal with some of these 

technical complications I developed 2 methods of LOY detection:  

i) Normalized Y  

After read filtering for each cell the MSY read counts are divided by total reads and multiplied by a scale 

factor of 10000. The logp1 (natural logarithm + 1) is then applied to avoid undefined values.  Essentially, 

for this metric I treated the Y chromosome as a single gene and processed its expression in using the same 

methods as the Seurat NormalizeData function. 

ii) XY ratio  

For this method, in each cell the total number of filtered MSY reads are divided by the total filtered non-

PAR X chromosome reads. Since the male X is haploid, and is required for cell viability, it provides a 

stable comparator for Y chromosome depth.    

 

3.1.6.1 Determining LOY cut-offs using female samples  

Generally, I determined LOY thresholds by observing trends in female samples that we assume do not 

possess a Y chromosome (Figure 3.6A). Most female cells (94.5%) have an XY ratio of 0, meaning 0 filtered 

chrY reads are present in the cell. We assume that female cells lack chromosome Y, and all reads that map back to 

the Y chromosome must be artefacts and represent technical error. 98% of female cells have a XY ratio below 

0.005, and >99% of female cells have a XY ratio below 0.01. The X chromosome is expressed at a similar rate  
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Figure 3.6 Determining the XY-ratio LOY cut-off and comparing to MSY counts method. A) XY ratio in 

females is used to model the threshold declaring LOY in males. Each point represents a cell. The logarithmic 

function has been applied to the XY ratio for visualization. I chose a XY ratio cut-off of 0.005 that detects LOY in 

98% of female cells. 94.5% of female cells have 0 Y reads, and 3.5% contain Y reads but are below the threshold. 

B)  When the 0.005 XY ratio threshold is applied to males it captures an additional 9 LOY cells, which adds to the 

8.6% of cells with 0 Y expression. If a 0.01 XY ratio cut-off is used an additional 47 cells or labelled LOY. C) Venn 

diagram showing the overlap between LOY calls using the MSY gene expression counts (used in Thompson et al.) 

and the XY ratio method. In total 88% of ploidy calls (normal ploidy and LOY calls) were shared between methods. 

However, only 1,026 XY ratio LOY calls were shared between methods (48.1%).  
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between males and females, so when this is these XY ratio thresholds are applied to male samples, I 

assume most reads being filtered are products of mapping noise and technical error. By applying a <= 0.005 XY 

filter I should be capturing most cells that biologically lack a chrY. 8.6% of all 22,484 male cells from the DLPFC 

(from 23 samples) have XY ratios of 0 and are clear LOY cases (Figure 3.6B). Ultimately, the XY ratio does not 

impact LOY proportions greatly at the 0.005 cut-off, as only 9 edge-case cells are reassigned from normal to LOY 

at this threshold. Given the low read depth of the data, I chose strict cut-offs to limit false positive LOY calls,  

The same process was done to find a suitable threshold for the normalized Y metric. The cut-off was set 

at 0.4 which is equivalent to  ~1 Y read per 20,000 reads (Appendix 3.3).  The average male normalized Y was 

2.16, while in female samples it was 0.018. The 0.40 cut-off adds an additional 22 LOY edge-case cells to the 

obvious 0 Y read cells. Surprisingly only 1,026 cells were shared between the MSY counts method and the XY 

ratio method (Figure 3.6C). 1,980 LOY calls were exclusive to the MSY counts method and 1,107 were 

exclusive to XY ratio. This suggests that each is metric is providing different information. 

 

3.1.6.2 Lack of UMI from MSY region 

As of March 2020, the use of single-cell RNAseq to predict Y chromosome loss has only been published 

once, by Thompson et al. in October 2019.39 Using the 10X Chromium Single Cell 3′ workflow, the group 

sequenced the transcriptome of 86,160 PBMCs from 19 UK Biobank individuals. Cells with less than 350 

expressed genes and 800 unique counts were removed and the LOY status of each cell was determined by a lack 

of expression from all MSY genes. Using this strategy, 16.5% of cells were assigned LOY status, which was used 

for downstream differential expression analysis testing. Bulk RNAseq from GTEx shows that Y-linked genes are 

expressed at similar levels in whole blood and brain tissues (Appendix 3.4). Therefore, I replicated this strategy 

on the Mathys et al. 129 single-nuclei DLPFC dataset used in this Chapter. I used various quality control cut-offs in 

an attempt to calibrate the method given its reduced depth, reduced library complexity and significantly different 

cell-types (Table 3.1). Total expressed gene cut-offs at 250, 350, 500, 800 and 1000 were applied, along with 

unique count cut-offs at 600, 800, 1000, 2000. Within a cell, LOY status was assigned if all the following Y- 
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Table 3.1 Comparison between ROSMAP single-nuclei RNA-seq data (Mathys et al. 2019) and UK BioBank single-cell RNA-seq data 

(Thompson et al. 2019). To label cells as LOY, Thompson et al. used a lack of expression counts from genes residing in the male specific Y region 

(MSY). The data used by Thompson et al. had a 2.8-fold increase in mean reads per cells compared to the data used in this thesis (Mathys), and therefore 

their strategy was not directly applicable. Additional filtering and quality control methods were required to replicate the method used by Thompson et al.   
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linked genes lacked expression: RPS4Y1, ZFY, PCDH11Y, AMELY, TBL1Y, TSPY1, USP9Y, DDX3Y, 

UTY, TMSB4Y, NLGN4Y, HSFY1, HSFY2, KDM5D, EIF1AY, PRY2, RBMY1J, BPY2, DAZ2, DAZ4. Y-

linked gene were included if they showed expression in at least 3 cells in the dataset (Appendix 3.5).  

 

3.2 Results 

3.2.1 Loss of Y detection: replication using MSY counts method (Thompson et al.) 

I began analyzing the DLPFC single-cell dataset for loss of Y (LOY) using expression counts of genes 

residing in the male-specific Y (MSY) as a marker of Y chromosome presence. Initially, I replicated quality 

control cut-offs and thresholds used by Thompson et al. to detect LOY in PBMCs.39 Male cells with <5% 

mitochondrial RNA (non-apoptotic cells), >350 expressed genes, and >800 UMI were included (n=22,484). Using 

these quality controls, 2,856 cells were assigned LOY status (12.7%), which is similar to rates found in PBMC 

(16.5%), but much greater than expected in brain tissue.39,41,56 When separated by cell type, LOY rates varied 

significantly, especially between neuronal and non-neuronal cell types (Figure 3.7A). Upon further analysis it 

became clear that LOY assignment using MSY expression counts at these published QC thresholds was highly 

correlated with cell-specific sequencing depth (Figure 3.7B-C). LOY cells had a mean of 1,002 expressed genes, 

and 1,383 total counts, whereas normal cells had a mean of 2,480 expressed genes, and 4,599 total counts 

(Appendix 3.6). Cell types with low mean expression had very high LOY prevalence including microglia (50% 

LOY), astrocytes (27.6%), and oligodendrocytes (34.1%). Whereas cells with high mean expression had low rates 

of LOY: inhibitory neurons (8.9%), excitatory neurons (5.2%). The large difference in total RNA output and Y-

linked gene expression between diverse brain cell-types makes simple LOY assignment using MSY counts 

unreliable when using low-depth single-nuclei data.     

After replicating the Thompson et al. method39 it became clear that to produce reliable estimates of LOY, QC 

would have to be altered and optimized to the specific characteristics of the single-nucleus data. I began by using 

increasingly strict quality control cut-offs and measuring LOY proportion in each cell-type. LOY rate was highly  
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Figure 3.7 t-SNE clustering of loss of Y labelled cells and correlation with read depth. Left. MSY gene count method from Thompson et al. to 

detect LOY in PBMCs, visualized using t-SNE. Male cells with <5% mitochondrial RNA (non-apoptotic cells), >350 expressed genes, and >800 

UMI were included (n=22,484). Using these quality controls, 2,856 cells were assigned LOY status (12.7%). Yellow points represent cells of normal 

ploidy, while blue points have been labelled LOY. Right. Cells assigned LOY are highly concentrated in cells with low library complexity and low 

unique read counts. Top. Points (cells) are colored based on number of expressed genes. Bottom. Points are labelled by read depth.  
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dependent on both total counts and library complexity (Appendix 3.7). Because LOY was so highly associated 

with read depth and library complexity using this method, I decided a more sensitive method of LOY detection 

would be beneficial.   

 

3.2.2 Sensitive loss of Y detection  

In the single-nuclei RNA-seq dataset used in this Chapter, Y-linked gene expression is variable, and 

subject to frequent gene dropout. This lack of sensitivity limits the effectiveness of using MSY counts to detect 

LOY. Cell Ranger, the program used to call gene expression counts from 10x Genomics single-cell data, is 

conservative when calculating cell specific gene expression. The main goal of the Cell Ranger algorithm is to 

strictly eliminate PCR artefacts from the amplification process to reliably determine unique molecular identifiers 

for accurate cell-type clustering, pathway analysis and differential expression analysis. The 10x Genomics single-

cell assay captures polyadenylated (polyA) transcripts including mRNA, some known long noncoding RNAs and 

antisense transcripts. When counting unique gene counts, the Cell Ranger algorithm removes intergenic reads, 

which removes additional evidence of the Y chromosome. Furthermore, Cell Ranger requires reads align to both 

the genome and transcriptome which further reduces available data. While this is essential for many applications 

of single-cell transcriptomic analysis, it creates sensitivity problems when trying to detect the presence of a poorly 

expressed chromosome within low depth data. In order to provide a more accurate assessment of LOY using this 

dataset, I needed to develop a more sensitive LOY detection method that loosened read inclusion restrictions and 

used a greater proportion of the available transcriptomic evidence (Methods).  

  

3.2.3 Estimated loss of chromosome Y proportions by cell-type 

After applying the previous cut-offs of >350 expressed genes, >800 UMI, and < 15% mitochondrial gene 

proportion (increased from 5% as neurons express much more mitochondrial RNA), 22,982 male cells were 

included. After establishing false positive read tendencies in the female cells (Methods), cells with a XY ratio 
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less than 0.005 were labelled LOY cells. Across these cells, my LOY detection method assigned 8.2% of cells as 

LOY, which was 4.5% less than value determined by the MSY gene expression method. However, again it 

became apparent that cells with low expression levels were much more likely to be assigned LOY (Figure 3.8; 

Appendix 3.8). To account for this bias and to compare similar depth cells, I split cells into discrete quintiles 

(divided into fifths) based on total filtered cell read depth. In the first 20% (1,730 to 7,000 reads/cell) 25.2% of 

cells were assigned LOY. As expected, in the subsequent quintiles LOY proportions decreased: 13.8% LOY 

(40%; 7,001-12,075 reads/cell),  3.7% LOY (60%; 12,076-21,630 reads/cell), 0.6% LOY (80%; 21,631-41,582 

reads/cell), 0.04% LOY (100%; 41,583-357,000 reads/cell) (Figure 3.8).   

Using the discrete read depth groups, I further split LOY proportions by cell type (Figure 3.9A). LOY 

estimates were unstable across all cell types until the 3rd quintile (60%; 21,631-41,582 reads). For example, in the 

1st quintile (1,730 to 7,000 reads/cell) 36% of excitatory neurons were LOY, compared to just 3% in the 3rd 

quintile and <0.01% in the 4th and 5th quintiles. To accurately compare LOY between cell-types I exclusively used 

cells in the 4th quintile (21,631-41,582 reads/cell), which included 3,444 excitatory neurons, 784 inhibitory 

neurons, 132 oligodendrocytes, 98 astrocytes, 151 oligodendrocytes progenitor cells and 21 microglia (n=4,630). 

First, I looked for clustering of LOY cells on the t-SNE plot as it is conceivable that LOY cells have similar 

transcriptomic profiles. However, no noticeable clustering was observed (Figure 3.9C). Next, I compared 

sequencing characteristics such as total number of expressed genes, total UMI/cell and filtered X reads/cell 

between LOY and normal cells within each cell-type (Figure 3.9E). In general, LOY cell metrics were slightly 

reduced compared to normal cells, however in each case values were similar, allowing for an acceptable LOY 

comparison between cell-types. In this specific group of increased sequencing depth cells (80%; 21,631-41,582 

reads/cell), I found LOY rates of 0.23% in excitatory neurons (8 / 3444), 0.12% (1 / 784) in inhibitory neurons, 

2.6% in OPCs (4 / 151), 3% in astrocytes (3 / 98), 4.5% in oligodendrocytes (6 / 132), and 28.5% in microglia (6 / 

21). Similar trends were found in the 60% quintile as well, albeit at increased rates (Figure 3.9B). Although some 

cell-type sample sizes are small, this data suggests that glial cells and specifically microglia are affected by Y loss 

at a higher rate than neuronal cells.  
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Figure 3.8 t-SNE clustering of loss of Y labelled 

cells with increasing depth using XY ratio method. 

Cells were split into quintiles based on total read 

depth and LOY cells were plotted on t-SNE cluster 

diagrams. Red cells are normal, and white cells are 

LOY. LOY rates increase from 25.2% in lowly 

expressed genes to 0.04% in highly expressed genes. 

As a result of the lack of Y chromosome expression 

in shallow depth cells, I primarily used cells in the 

12,630 – 41,582 read depth range when estimating 

true LOY rates in the brain. In total 8.6% of cells 

were labelled as LOY using the XY ratio method 

(cut-off: 0.005). 
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Figure 3.9 Characteristics of LOY cells in the dorsolateral prefrontal cortex across cell-type. Cells were split into 

quintiles based on total sequencing depth and LOY cells were compared within these ranges. A) Total number of cells 

included in each discrete grouping of cells. The 80% quintile (21,631- 41,582 reads) was used to compare LOY 

between cells as at this read depth stochastic Y-linked gene dropout is less likely and LOY calls are more confident. B) 

Heatmap showing LOY proportions across cell-type for each of the read depth quintiles. LOY proportions are high in 

all cell-types in low read depth cells. LOY proportions decrease in all cell-types as read depth increases, with the 

exception of microglia which maintains high LOY proportions. Glial cells (oligodendrocytes, astrocytes, microglia) all 

show elevated LOY rates compared to neurons and OPCs. C) t-SNE plot showing the clustering of LOY cells across 

the cohort for cells with read depth in the 80% quintile (21,631- 41,582 reads). LOY cells are colored white, while 

normal cells are colored red. There are no obvious clustering patterns of LOY cells. D) X read depth, Y read depth and 

LOY proportion of each cell-type across sequencing depth. Oligodendrocytes and astrocytes, microglia appear to have 

an elevated rate of LOY. E) Comparison of sequencing characteristics between cells assigned LOY and normal ploidy 

by cell type. LOY cells are similar to normal cells for most sequencing traits including expressed genes per cell, 

number of counts per cell, total filtered reads per cell and filtered X reads per cell. Because LOY and normal cell 

groups are comparable, LOY calls are more meaningful and less likely to be a result of technical differences.  

Oligodendrocyte (Oli), microglia (Mic), astrocyte (Ast), oligodendrocyte progenitor cell (OPC), excitatory neuron 

(Ex), inhibitory neuron (In). 
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However, I remained skeptical that increased Y loss in glial cells may just be a result of reduced Y-linked 

gene expression, library complexity and sequencing depth. Neurons express a greater number of transcripts from a 

more diverse set of genes compared to glia (Figure 3.7E). Furthermore, microglia express the smallest set of 

genes and smallest number of Y-linked genes of all cell types in the study (Appendix 3.5). To visualize these 

relationships, I plotted the proportion of loss of Y cells and average total expressed Y-linked genes/cell by cell-

type across increasing library complexity (total number of genes expressed; Figure 3.10). All cells were split into 

6 discrete groups based on library complexity. As expected, as general library complexity increased, the average 

number of expressed Y genes increased, and the proportion of cells assigned LOY decreased. For example, in low 

library complexity excitatory neurons (528-831 expressed genes), 0.91 Y genes were expressed per cell and 45% 

were assigned LOY status. In high library complexity excitatory neurons (2,331-4,390 expressed genes), >3 Y 

genes were expressed per cell and only 21 of  5750 (0.03%) excitatory neurons were assigned LOY status. 

Inhibitory neurons and oligodendrocyte progenitor cells follow this same pattern. The glial cells (astrocytes, 

oligodendrocytes, and microglia) appear to maintain a larger proportion of LOY cells despite increased library 

complexity and sequencing depth. Microglia deviate from the trends seen in the other cells although it is difficult 

to make definitive conclusions given the low microglia sample. Nevertheless, microglia LOY rates remain high 

(35%; 1121-1610 expressed genes) even as cell library complexity, and mean Y genes expression increases.  

Lastly, I wanted to compare mean depth normalized Y-linked gene expression to LOY proportion. To observe 

trends more easily, I split the cells into 10 equal fractions based on total read depth (Appendix 3.9). As a general 

trend, LOY proportions decrease as mean normalized Y-linked gene expression increases (Appendix 3.9 and 

Appendix 3.10). Also, chromosome Y expression is stable and proportionally expressed across astrocytes, 

oligodendrocytes, and microglia as cell read depth increases. For example, oligodendrocyte normalized Y gene 

expression ranges from 0.10 to 0.12 between 1,730 and 39,700 reads per cell. Across the same range, excitatory 

neurons normalized Y expression increased from 0.12 to 0.20, and inhibitory neurons increased from 0.15 to 0.40. 

This suggests that transcriptionally active neurons produce a greater proportion of chromosome Y gene transcripts  
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Figure 3.10 Proportion of loss of Y cells (LOY) and mean expressed Y-linked genes by cell type across library 

complexity. All cells were split into discrete groups based on library complexity (total number of genes expressed). The 

left axis corresponds to the line plot and displays the proportion of cells assigned LOY status by cell type. The right axis 

corresponds to the bar plot and displays the mean number of Y genes expressed per cell by cell type. The table below 

contains total cell counts and LOY counts for each cell type in each discrete library complexity group. As general library 

complexity increases, the average number of expressed Y genes per cell increases, and the proportion of cells assigned 

LOY decreases. Although sample sizes are very low, microglia appear to deviate from the trends seen in the other cell 

types. LOY rates remain high (35%) even as cell library complexity, and mean total Y genes expressed increases. 

Astrocytes and oligodendrocytes also show elevate LOY proportion in cell with increased library complexity and read 

depth.  
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than less active neurons, whereas glial cells tend to express chromosome Y genes at a similar rate across all 

transcriptional states.  

 

3.3 Chapter summary and conclusions  

The available data suggests that in the aging dorsolateral prefrontal cortex, the microglia population likely 

harbors a higher proportion of loss of Y cells than the other cell types. However, greater microglia sample sizes at 

increased depth are necessary to definitively make this conclusion. Additionally, astrocytes and oligodendrocytes 

appear to have elevated LOY rates when compared to neurons and oligodendrocyte progenitor cells.  

The discrepancy of both read depth and library complexity between diverse brain cell-types makes detecting and 

comparing Y loss between them difficult. Low-depth single-nucleus RNAseq further complicates the task as the Y 

chromosome only contains 9 regularly expressed genes in the brain. The LOY detection method conceived during 

this chapter must be benchmarked using alternative technologies, replicated, and tuned on additional datasets 

before more confident conclusions can be made. That being said, preliminary evidence suggests that if LOY is 

occurring in the brain, it is likely occurring in the glial cells and in the microglia specifically.   
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4. Discussion 

4.1 Overview  

Recent interest in mosaic loss of chromosome Y in aging men and its association with several negative 

health outcomes has increased the need for bioinformatic methods to analyze the Y chromosome.39,130,131 In the 

past, the Y chromosome was commonly removed from genomic analyses for several reasons including low gene 

count, haploidy, lack of biological interest, short-read mapping difficulties and others.119 As a result, methods for 

investigating chromosome Y specific trends using NGS have lagged behind. The main objective of this thesis was 

to improve methods of Y chromosome aneuploidy detection using whole genome sequencing and single-nuclei 

RNA sequencing. I then used these methods to provide estimates of loss of Y (LOY) in blood, and brain tissue 

cell-types.  

Previous study suggests that LOY occurs as a result of mitotic replication errors arising through accumulated 

damage and dysfunction of DNA replication, maintenance, and repair pathways.39 Therefore, it is reasonable to 

hypothesize that cell-types that replicate more frequently have a greater potential for mis-segregation and whole 

chromosome Y loss events. Although LOY rates had not previously been established in human brain tissue, given 

known cellular replenishment rates and selective clonal expansion in the blood, I hypothesized that we would 

observe less LOY in brain tissue than blood tissue. I further hypothesized that if LOY were occurring in brain 

tissue, the glial cells, and specifically the microglia132, would likely be the most affected cell-types. Further 

understanding of LOY mechanisms and prevalence across human tissues is important as its detection via blood 

could provide a valuable biomarker of systemic genomic instability and therefore risk of developing cancer, 

neurodegenerative disease, and other age-related diseases. Given its high prevalence in elderly males, LOY may 

represent an understudied factor involved in the male immune system function, sex-specific life-span bias, and 

male cancer incidence bias.126 
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4.2 Summary of findings and limitations 

 

I have split the major findings of this thesis into technical/methodological findings and biological findings. 

Where relevant, I have added study limitations and directions for future studies.  

 

4.2.1 Technical and methodological 

4.2.1.1 Mappability and GC content filtering improve LOY detection using next-generation sequencing 

data 

  Past efforts to call copy number alterations and large structural variations using short-read sequencing 

have corrected for the effect of mappability and GC content biaes.133,134 Because of PCR chemistry during the 

sequencing process, reads deviating from average GC content ratios are generally unrepresented in raw read 

counts. As well, regions of the reference genome that consist of non-unique and/or ambiguous sequence 

consistently show depth biases. Because many aneuploidy detection algorithms remove the haploid Y 

chromosome before analysis 99, as part of this thesis, I used concepts around bias correction from published tools 

and developed an in-house method for estimating Y chromosome mosaic aneuploidy using WGS data. 

 When analyzing mosaic aneuploidy of the Y chromosome I found that mappability filtering is of high 

importance (Figure 2.6B). The q-arm of the Y in particular consists of highly repetitive, unreliable sequence that 

can lead to underestimates of relative chromosomal content. Given that NGS mosaic aneuploidy detection is 

analyzing data for small deviations from expected in read counts from millions of cells, choosing regions of 

reliable, low variance, and high-confidence read mapping is necessary.  

Despite our work here, there are several methodological steps that could be applied in the future to further 

improve the consistency and accuracy of mosaic aneuploidy detection of the sex chromosomes. First, projects 

involving the sequencing of sex chromosomes should be aligned to a sex-specific reference genome through tools 
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such as XYalign.121 Male samples are aligned to the original reference genome, however females should be 

aligned to a reference with a hard-masked Y chromosome.  By removing the Y chromosome from the reference 

genome when mapping female samples, far fewer mapping ambiguities arise and alignment across the X 

chromosome is more consistent. Further, before aligning reads from male samples, selectively hard-masking the 

Y chromosome reference is an important step for reducing mapping difficulties. In particular, PAR1, PAR2, XTR 

and other highly homologous and/or repetitive regions that introduce technical difficulties should be hard masked 

within the Y chromosome of the reference genome before sequencing. Filtering these regions before alignment, as 

opposed to after (as was done in this study), improves mapping quality, alignment scores and likely the 

consistency of aneuploidy detection using counts.121 As result of data storage location and time, aligning our WGS 

samples was unfeasible, but future studies should pay attention to these considerations.   

 

4.2.1.2 Single-nuclei RNAseq is not optimal for LOY detection  

Single-nuclei RNA-seq (snRNA-seq) involves the isolation and sequencing of individual nuclei as 

opposed to whole cells. While each method has its benefits and weaknesses, studies have shown that single-nuclei 

expression data does not differ significantly from single-cell data, and a vast majority of transcripts are captured 

using both techniques.135 In addition, snRNA-seq has broadened the capabilities of individual cell genomic 

research as a greater range of tissues and cell-types can be analyzed, and the variable enzymatic dissociation 

process common to single-cell library preparation is avoided.135 Preserved and frozen tissues, as well dissociation 

adverse and sensitive cells types (eg. neurons, adipocytes) can readily be subject to snRNA-seq, options that are 

not available using the traditional, whole cell workflow. However, despite the advantages of snRNA-seq there are 

drawbacks. Mainly, the cytoplasm of the cell is discarded, 10 to 100-fold less cDNA is recovered, and less genes 

are detected per cell.136 Ultimately, snRNA-seq data can be applied to a wider range of tissue samples and infers 

less experimental bias than scRNA-seq but this comes at the expense of reduced total sequenced cDNA, raw 

sequencing depth, and gene expression counts. When using the transcriptome as a proxy for DNA to detect 
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aneuploidy, especially that of a poorly expressed chromosome such as chromosome Y, reduced sequencing depth, 

increased gene dropout and an increasingly sparse expression matrix cause several aneuploidy detection problems.  

 Perhaps the most consequential drawback of using snRNAseq for LOY detection is the lack of  RPS4Y1 

expression (Ribosomal Protein S4 Y-Linked 1). RPS4Y1 resides in the male specific region of the Y chromosome  

and encodes an S4 component of the 40S ribosomal subunit. In most tissues RPS4Y1 is the highest expressed Y 

chromosome gene outside of the PAR region (Appendix 3.4).137 Unfortunately, RPS4Y1 is almost exclusively 

expressed in the cytoplasm and therefore single-nuclei RNA-seq does not sequence its transcripts in meaningful 

amounts. Without RPS4Y1, the detection of chromosome Y using the transcriptome is much more dependent on 

sequencing depth and cell-type specific expression patterns and is increasingly prone to stochastic variation. 

As a result of these single-nuclei specific sequencing challenges, I developed an alternative LOY 

detection method designed to improve sensitivity and overcome the expression “sparsity” problem. Instead of 

detecting Y chromosome presence using gene expression counts (e.g., using the standard from the 10x Genomics 

Cell Ranger algorithm), I used raw reads mapped to the reference genome and applied a custom set of strict filters 

based on mappability, mapping quality and alignment score. Since Cell Ranger requires mapping to both the 

genome and transcriptome, novel unannotated transcripts are not included in the analysis which can remove a 

significant amount of information. Using single-nuclei RNA data from brain tissue elevates the potential impact 

of these confounders as the human brain represents one of the most complex transcriptomes.138 Single-nuclei 

transcriptomes also contain a higher percentage of intergenic and intronic transcripts which are poorly annotated 

compared to those from exons.138 One snRNA-seq study of the cerebellar cortex found that 7% of reads mapped 

to non-repetitive intergenic regions, reads that are commonly removed by Cell Ranger.139 Evidence shows that 

many of these regions are enriched in conserved microRNA binding sites and may represent alternative brain-

specific 3′-UTRs of known genes.139 Much of the complex brain transcriptome is poorly annotated and by 

loosening restrictions on read filtering, a greater range of reads are kept, improving Y chromosome aneuploidy 

detection sensitivity.  
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Using my method, the number of filtered Y reads per male cell was 25.7, while females had 0.05 per cell. 

In comparison, male samples had 3.32 Cell Ranger expression counts from MSY genes per cell, compared to 0.08 

per cell in females. This suggests that my method is improving sensitivity without allowing an abundance of false 

positives, artefacts, and sequencing noise. In total, across all male cells, both LOY methods agree on ~88% of 

LOY calls. However, one concern is LOY calls do not overwhelmingly overlap between methods. 1,026 of 2,133 

(48.1%) of XY ratio LOY calls in the raw read method calls overlapped with the MSY counts method. The 

methods commonly agree on normal ploidy calls but vary when calling LOY cells. Although the reason for this 

discrepancy requires more investigation, it is likely due to i) unnecessarily strict filtering applied to exonic reads, 

ii) variation in per cell sequencing quality and/or, iii) expression count sparsity. Cells with poor sequencing quality 

are more likely to exhibit poor mapping quality and poor alignment scores which leads to an increased rate of read 

filtering and a higher probability of being labelled LOY. However, given that both LOY detection methods are 

derived from the same data, I would expect greater similarly in their conclusions. To improve the overlap between 

the two methods, I plan to relax exonic read filtering, and further constrain intergenic read filtering. Additionally, 

in the future, Cell Ranger counts and my sensitive raw read method should be combined and used simultaneously 

when detecting LOY. Cell Ranger provides highly confident estimates of expression but can suffer from 

stochastic sparsity problems when calling LOY. The raw read method detailed here likely allows more false 

negatives but provides and increasingly sensitive estimate of LOY. When combined they may be able to assign 

LOY calls more confidently, however more benchmarking is required to validate these claims. 

 

4.2.2 Biological 

4.2.2.1 Loss of Y occurs at a higher rate in the blood than in the brain. 

Using whole genome sequencing (WGS) from 362 elderly male individuals (mean age = 87.2) we 

observed LOY (defined as >10% or more of cells being affected) in 13.8% of blood samples and in 0% of both 

cerebellum and dorsolateral prefrontal cortex (DLPFC) samples. Additionally, we observed LOY in 16.6% of 306 
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SNP array blood samples. Recent studies have found similar but slightly increased LOY rates in blood using a 

10% affected cell threshold, occurring in about 5-10%, 15-20% and 20-30% of aging men around 60, 70 and 80 

years of age, respectively.46,47,52,130,140 It must be noted that date of blood draws used for our WGS and SNP-array 

blood cohort is unknown and the date of enrollment was used in its place, which could be leading to 

underestimates of sample age. Nevertheless, LOY estimates are broadly in accordance with previous studies in 

blood. To my knowledge, no previous study has studied the brain for LOY using WGS and therefore we do not 

have a published benchmark. However, given low proliferation and replenishment rates in the brain, a LOY 

prevalence less than 10% is expected. Single-cell WGS studies in the brain have found that 0.7–2.2% of neurons 

show evidence of autosomal aneuploidy; however it is difficult to extrapolate this to the Y chromosome given its 

unique behavior in the blood.40,41,56 Additionally, our single-nuclei sequencing in the DLPFC found that of the 

22,484 male cells, 8.6% were declared LOY. However, the true LOY rate is likely lower. When analysis was 

confined to cells with deeper sequencing (21,631 – 41,582 reads), ~0.6% of cells were declared LOY. For 

comparison, in PBMCs, Thompson et al. labelled 15.6% of 86,160 cells as LOY, with 11.3% of B-lymphocytes 

showing LOY. However, this study used single-cell RNA sequencing (which included cytoplasmic transcripts) 

and not single-nuclei.39  

Since few other studies have analyzed LOY in the brain using next-generation sequencing data we do not 

have a direct comparator or benchmark. Several brain aneuploidy studies using FISH and other related methods 

have published estimates of aneuploidy in humans, one of which included the Y chromosome aneuploidy. Using 

FISH, Iourov et al. found 0.1% of ~7000 male neurons had Y aneuploidy. Mean age (μ=24.6) was much younger 

than our cohort (μ=86.7), and the paper did not disclose rates of Y loss in their Alzheimer’s samples.141 Another 

study investigating the aging murine brain found age-related, chromosome specific aneuploidy in chromosomes 7, 

18 and Y.142 Elderly mice (28 months) showed LOY in ~2% of cells. Interestingly, this study also found higher 

rates of aneuploidy in the cerebral cortex compared to cerebellum and found that non-neuronal cells were affected 

by age-related aneuploidy at ~5 times the rate of neuronal cells.142 However, FISH estimates of aneuploidy in the 
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brain have been notoriously variable in the past, and larger single-cell, sequencing based aneuploidy studies are 

required to better elucidate true rates.97  

 

4.2.2.2 Age-related loss of Y in the blood and the prefrontal cortex but not cerebellum 

In agreement with previous LOY studies we found that our continuous measure of Y chromosome content 

(referred to as estimated copy number) decreased with age in the blood. Age is the most significant known risk 

factor for LOY and therefore this association was expected (and largely treated as a quality control assurance). 

More strikingly, we found two lines of evidence that suggest low-frequency LOY is occurring within the DLPFC 

at rates below our 10% LOY threshold. First, we found a significant association between LOY and age in the 

DLPFC (p=3.9x10-5). Interestingly, evidence of age-dependent LOY in the DLPFC has also been published on 

one other occasion. Through the use of fluorescence qPCR, a 2018 found that LOY in the DLPFC was associated 

with age, albeit with a small sample size (n=26; p=0.015).143 Secondly, we found a significant intrasample 

correlation between LOY rates in blood and DLPFC tissue amongst individuals with genomic data from both 

tissues. Individuals with severe rates of LOY in the blood (>30% cell affected) also showed reduced Y copy 

number in the DLPFC. This suggests Y loss is likely occurring at low-frequency in the DLPFC and furthermore, 

LOY in the blood could be a general biomarker of LOY in other tissues such as the brain.  

In the cerebellum we did not observe age-related LOY or a relationship with intrasample LOY rates in 

blood, which agrees with known age-related changes between brain regions.144 Prior study has found that 

cerebellar expression patterns show fewer age-related alterations compared to the cerebral cortex.144,145 

Specifically, many more genes are downregulated with age in the cerebral cortex, which could be a result of 

accumulated DNA damage. Secondly, a DNA methylation study using an epigenetic biomarker of aging known as 

“the epigenetic clock”, found that the cerebellum is the “youngest” region of the brain in subjects older than 80 

years of age. This trend accelerates with increasing age. For example, cerebellum tissue of individuals from 95 to 

102 years of age was approximately 10 years younger than expected, whereas frontal cortex tissue was 2 years 



90 
 

older than expected.146 At 110 years of age, the cerebellum was 15 years younger than expected. All together this 

evidence suggests the human cortex ages at a greater rate than the cerebellum and is it at higher risk of DNA 

damage. The biological mechanisms leading brain-region specific aging rates are not completely known but are 

likely a result of differing rates of metabolic activity. Irrespective of age, the cerebellum has a lower metabolic 

rate than the cortex in both humans and other primates.145 Tissues with reduced metabolic activity and aerobic 

respiration rates are expected to produce less reactive species and therefore generally accumulate less DNA 

damage. In agreement, in both aging humans and mice, cerebellar mtDNA contains fewer deletions and copy 

number variations than the cortex.147 Given higher rates of mutation, and early onset of epigenetic aging 

biomarkers one would expect age-related LOY to occur at a higher rate in the DLPFC than the cerebellum which 

is what our data suggests. 

 

4.2.2.3 Astrocytes, oligodendrocytes, and especially microglia show elevated rates of Y loss compared to 

neurons.  

Based on our snRNA-seq analysis, this study provides preliminary quantification of LOY rates across 6 

cell-types in the DLPFC.  To date, there is little information on mutation rates within glial cells in the brain as 

most previous studies have focused on neurons. Although it was difficult to disentangle cell read depth and cell-

type specific Y-linked gene expression patterns from true LOY, we concluded that microglia, oligodendrocytes, 

and astrocytes likely have higher LOY prevalence than neurons and oligodendrocytes progenitor cells (OPCs). 

Specifically, microglia appear to be most frequently affected by LOY (74 of 222 cells; 33% LOY).   

 In my opinion, LOY rates are overestimated when using all QC passing cells (Global LOY rate = 8.6%). 

For example, at the lowest read depth quartile, 25% of cells were declared LOY, while in the highest read quartile 

0.04% were declared LOY. Considering previous study and known proliferation rates in the brain, 8.6% LOY is 

likely an overestimation. Because of variable LOY rates in all cell-types in lowly-expressed cells, I also reported a 

high confidence LOY from cells in the 60-80% percentile of filtered read depth (0.6% LOY; high confidence). 
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Nevertheless, until multi-technology benchmarking is complete, LOY rates determined through our pipeline are 

purely estimates.  

 

4.2.2.3.1 Microglia 

We found that 33% (74 / 222) of all microglia lacked a Y chromosome at all sequencing depths, and 29% 

(6 / 21) were LOY in the higher confidence depth range, although low sample size and low sequencing depth limit 

the reliability of the data. To help explain such high incidence of LOY in microglia it is useful to understand their 

cellular origin, progenitors, and proliferation tendencies. Microglia are the resident macrophages and immune 

regulators in the brain. They play important roles in brain development and microenvironment homeostasis, and 

are key players in the progression of several neurodegenerative disorders.148 Microglia are glial cells that originate 

in the yolk sac during the embryonic period and populate the brain mesenchyme early in development.148 Recent 

study has confirmed that microglia continuously replicate themselves and rarely rely on replenishment from bone 

marrow derived monocytic precursors (although peripheral replenishment has been observed in response to severe 

brain injury, inflammation, and neurodegeneration).149 In general, resting microglia are long-lived and replicate 

much slower than macrophages in the vasculature. A study using 14C levels in genomic DNA found that in 

healthy conditions, microglia live for an average of 4.2 years, and up to 20 years, with 0.08% of the population 

replicating each day.132 This was in comparison to ~10% daily turnover in peripheral monocytes, ~0.001%  in 

oligodendrocytes, and ~0.0001% in cortical neurons.132 Limited turnover throughout their lifespan leaves 

microglia susceptible to age-associated dysfunction through shortening of telomeres, accumulation of DNA 

damage and cellular dystrophy. Despite slow replication in resting states, in response to neurological injury 

microglia enter a reactive state that involves a burst of mitotic activity.150 Microglia proliferative activity has been 

shown to accelerate during normal CNS aging, and specifically in response to elevated reactive oxygen species 

concentrations, physical brain injury, and disease states such as Alzheimer’s disease.151,152 It is possible that long-

lived microglial populations accumulate DNA damage that can disrupt DNA maintenance pathways. With 

increased neurodegeneration, neuroinflammation, and age-related brain injury the microglial replenishment rate 
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increases significantly, and degraded mitotic machinery leads to elevated incidence of LOY.151 Microglia have 

been found constitute ~12% of the cells in the central nervous system and represent a significant population that 

could influence LOY rates found in bulk tissue.153 Given these proliferative attributes and the conclusions of our 

LOY study (Microglial LOY rate: 33%) I believe it is reasonable to suggest microglia are the cell type most 

significantly affected by elevated rates of LOY in the brain. 

 

4.2.2.3.2 Oligodendrocytes 

We found that 19.7% (785 / 3,974) of all oligodendrocytes lacked a Y chromosome at all sequencing 

depths, and 5% (7 / 132) lacked Y in the high-confidence depth range. Oligodendrocytes are glial cells that are 

responsible for axon myelination and general metabolic support for neurons. Oligodendrocytes are post-mitotic, 

non-proliferating cells that are produced early in development and are replenished by proliferative OPCs.154 In 

response to white matter damage, OPCs proliferate, migrate to occupy the demyelinated region, differentiate into 

oligodendrocytes, and restore axon myelination.155 If LOY is accumulating in oligodendrocytes, the main origin is 

likely mis-segregation events during OPC replenishment. In agreement with this theory, when compared to other 

glial cells OPCs have an increased susceptibility to oxidative damage which is attributed to low cellular 

antioxidant concentrations, and the highest iron content in the brain, which can invoke elevated free radical 

formation and lipid peroxidation.156 However, oligodendrocyte replenishment rates remain low as individuals age, 

and without a significant selective pressure the potential for large populations of oligodendrocytes to develop 

LOY seems unlikely.  

 

4.2.2.3.3 Astrocytes 

We found that 11.3% (128 / 1,132) of all astrocytes lacked a Y chromosome at all sequencing depth, and 3% 

(3 / 98) in high-confidence depth range. Astrocytes are glial cells with a star-shaped appearance and are the most 

common cell-type in the CNS.157 In addition to key structural roles in the brain, astrocytes have a number of 
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active roles including metabolic support of neurons, neurotransmitter uptake and release, CNS repair, and 

maintenance of the blood brain barrier.157 The astrocyte population is produced early in development from 

progenitor cells in the ventricular and subventricular zones. After initial population, it is accepted that astrocytes 

do not commonly replicate, however, in response to brain injury and disease, astrocytes enter a reactive state 

known as astrogliosis.158 In this state, astrocytes drastically change expression pattens and morphology to aid in 

CNS repair. Aging also appears to push astrocytes towards a reactive state phenotype, which includes an 

increasingly proliferative state.159 If LOY is accumulating in astrocytes, it is most likely to occur in long-lived 

astrocytes with degraded DNA maintenance pathways, that convert to a reactive state with age, cognitive decline, 

and neurodegeneration similar to microglia. Further investigation into the association between key astrogliosis 

markers (e.g. GFAP) and LOY will help clarify this hypothesis.  

 

4.2.2.4 Cellular senescence 

 As a result of our use of snRNA-seq to estimate LOY, cells with greater sequencing depth and 

transcriptional output have more expression counts and are more reliable tests for LOY. Cells with less counts 

often have more dropouts and express fewer genes, increasing the chance of false positive LOY calls – instances 

where biological cells contain a Y chromosome but sequencing results conclude LOY. Because of this, cells with 

reduced expression counts are often filtered, and cells with higher expression counts are retained. While this 

filtering strategy likely removes a large proportion of false positive LOY calls, it is also possible that LOY is 

concentrated in low expression count cells for biological reasons such as cellular senescence. As proliferative 

cells replicate across an organism’s lifetime, with each passage they inherit fundamental changes that eventually 

accumulate and lead to a permanent state of cell cycle arrest known as cellular senescence. Senescence is often 

triggered by the DNA damage response and acts as a defense mechanism that prevents cells from acquiring 

avoidable, potentially malignant mutations. Senescence is thought to be a major factor in the development of 

dystrophic microglia and astrocytes common to Alzheimer’s disease and other neurodegenerative diseases.160 If 

DNA surveillance detects a missing Y chromosome, it could trigger senescence resulting in reduced 
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transcriptional output in some cell-types. To isolate the effect of sequencing depth and senescence on LOY, a cell-

type specific senescence marker score could be given to each cell. This way any associations between them would 

be discovered. Ultimately, a method that determines if a cell’s lack of expression counts is a result of PCR 

amplification variability, or lack of biological RNA would help separate these effects. Also, deeper per cell 

sequencing and improved library construction will be useful for more accurate estimates of LOY using scRNA-

seq.  

 

4.4 Conclusions and future directions 

Across the work in this thesis we improved next-generation sequencing based, Y chromosome mosaic 

aneuploidy detection methods and used them to further the understanding of LOY in the brain. I concluded that 

LOY occurs at a greater rate in blood than the brain and that LOY increases with age in the dorsolateral prefrontal 

cortex but not the cerebellum. I also provided an estimate of LOY prevalence in the DLPFC, and provided 

preliminary evidence that microglia, astrocytes, and oligodendrocyte populations are the most likely cell-types to 

accumulate LOY in the cortex. It must be noted that in order to improve confidence in LOY prevalence estimation 

amongst brain cell-types, our method needs to be subject to replication and benchmarking across a variety of 

similar datasets, including deeper sequenced, single-cell datasets.  

Another contribution of our work is in identifying challenges in estimation of LOY with current data types. 

Future studies seeking to estimate LOY using single-cell RNAseq can hopefully be streamlined and optimized in 

the following ways:  

i) The use of whole cell samples opposed to single-nuclei samples when performing scRNAseq. 

Cytosolic RPS4Y1 expression is not captured in the nuclei and as a result LOY estimates are 

susceptible to low-read depth and false positive LOY calls.  

ii) Illumina Smart-seq2 plate-based library preparation instead of 10x Genomics Chromium droplet-

based preparation. Smart-seq2 captures more genes per cell, less dropouts, and reduced variability 
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amongst lowly expressed genes at the expense of total cells sequenced.161 Smart-seq2 expression data 

is likely more compatible with accurate LOY detection but a direct comparison is required. 

 

4.4.1 Future directions 

 In my opinion, loss of Y has several important implications on male health, many of which await 

discovery. The recent finding that LOY is detectable in ~40% of males greater than 70 years of age shines light on 

the prevalence and magnitude of this biological phenomenon.39 Below I have synthesized my understanding of 

LOY and the technologies used to detect it to produce intuitions for future LOY studies. 

 

4.4.1.1 Benchmark scRNA-seq LOY accuracy using tissues with known LOY rates.  

As has been done with SNP array, WGS and qPCR methods of detecting Y loss, scRNA-seq LOY 

detection could be applied to samples with known rates of LOY.127 An ideal study design would involve PBMC 

extraction from both young (<30y) and elderly males (>70y), or samples from individuals with known LOY. 

Samples could be subject to SNP array, WGS, qPCR as well as single-cell RNAseq. The concordance between the 

three former methods of LOY detection (eg. SNP array, WGS, qPCR) has been established, and this study would 

confirm the accuracy of single-cell transcriptomics for LOY estimation compared to known, reliable methods.  

 

4.4.1.2 Single-cell WGS and G&T-seq  

To my knowledge, very few studies of glial somatic mosaicism have been published to date. Given how 

long glial cells live and replenish themselves, combined with their complicated roles in neurodegeneration, 

inflammation, and aging, I believe a further understanding of somatic mutation in glial cells would benefit the 

scientific community. A single-cell WGS study using FACS sorted astrocytes, microglia and oligodendrocyte 

progenitor cells could shine light on both LOY and general mosaicism in glial populations. 
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The use of genome and transcriptome sequencing (G&T seq) has previously been used to benchmark 

aneuploidy detection using single-cell transcriptomics.110 Simply, cells are isolated, lysed, and single-cell RNA 

and DNA are separated and sequenced independently. Although, physical separation of DNA and RNA increases 

the risk of contamination, with improvements to DNA amplification G&T-seq allows for direct, within-cell 

detection of the genome and transcriptome. Such an assay would allow for benchmarking of single-cell RNA 

LOY detection accuracy and would have the additional benefit of accurately characterizing the transcriptome of 

LOY cells. It would also provide answers for the cellular senescence problem highlighted above. The total 

transcriptional variance of LOY cells (labelled through reliable DNA-based methods) could be compared to cells 

of expected ploidy.  

 

4.4.1.3 Repeat analysis across a variety of other cell types 

If single-cell RNAseq is confirmed as a reliable technology for detecting Y loss, a wider range of human 

tissues could be surveyed with confidence. A major benefit of using scRNAseq is that cell-type can be confirmed 

post-hoc using expression markers. Currently, only the blood39,46,52, bone marrow11, buccal cells130, various 

tumors162 and now the brain163 have been investigated across large cohorts for population estimates of LOY. 

Given that LOY mechanisms involve DNA maintenance degradation and cellular replication it seems unlikely 

that LOY is a phenomenon isolated to leukocytes. LOY analyses on highly proliferative colonic crypts and small 

intestinal epithelium would be interesting considering the association between the development of colorectal 

cancer and LOY in the blood. These are some of the most proliferative tissues in the human body and observing 

definitive, age-associated LOY in them would expand the scope of Y chromosome loss as a human disease 

process.  

In my opinion the most logical future direction is to investigate LOY more rigorously in the microglia, 

and other glial cells. Because of technical reasons, the data used in this thesis did not confidently determine the 

burden of LOY in the microglia. Repeating our analysis on isolated, reasonably deep sequenced microglia would 
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more definitively answer this question and provide evidence for another factor that may affect neurodegerative 

disease processes. Recently, isolated microglia from the DLPFC of elderly individuals was subjected to 10x 

Genomics droplet-based RNA-seq. As a next step I plan to repeat these analyzes on the isolated microglia data to 

further elucidate LOY rates and find differentially expressed genes between normal and LOY microglial cells.  
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Appendix 1 

List of abbreviations 

 
LOY – mosaic loss of chromosome Y 

AD – Alzheimer’s disease 

chrY – chromosome Y 

snRNA-seq – single-nuclei RNA sequencing 

scRNA-seq – single-cell RNA sequencing 

WGS – whole genome sequencing 

scWGS – single-cell whole genome sequencing 

ROSMAP – Religious Orders Study (ROS) and Rush Memory and Aging Project (MAP) 

FISH - fluorescence in situ hybridization 

SNV – single-nucleotide variant 

CNV- copy number variant 

SV- structural variant 

HSPC – hematopoietic stem cells and precursor cells 

MVA – Mosaic variegated aneuploidy syndrome 

GWAS – genome-wide association study 

PAR – pseudoautosomal region 

MSY – male specific Y region 

XTR – X-transposed region 

XDR – X-degenerate region 

CGH - comparative genomic hybridization  

LRR - log R ratio  

mLRR – median log R ratio 

mLRRY – median log R ratio across male specific Y region 

WGA – whole genome amplification 

DLPFC – dorsolateral prefrontal cortex 

GEM – The Genome Multitool mapper aligner 

rRD – relative read depth 

CN – estimated copy number 

Ex – excitatory neuron 

In – inhibitory neuron 

Oli – oligodendrocyte 

OPC – oligodendrocyte progenitor cell 

Mic – microglia 

Ast – astrocyte 

UMI – unique molecular identifier 

qPCR – quantitative PCR 

G&T-seq – genome and transcriptome sequencing 

FACS – fluorescence activated cell sorting  

ANCOVA – analysis of covariance 

OR – odds ratio 

HR – hazard ratio 
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Appendix 2 

Chapter 2 - Additional figures  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Appendix Figure 2.1 WGS read depth is not significantly different between tissues and extraction kits. Each 

point represents an individual WGS sample. Samples are divided by tissue and colored by DNA extraction kit.  
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Appendix Figure 2.2 Overview of sequencing depth and age distributions within each tissue.  A) WGS depth 

distributions in each tissue. The median in each tissue is represented by the black line. B) Age of death and age of 

sampling in both cerebellum and DLPFC tissue (WGS). C) Baseline age or enrollment age distributions of blood 

samples from SNP-array, WGS, and overlapping (WGS/SNP-array). Date of sampling was not provided, so baseline 

age was used as an estimation. Dorsolateral prefrontal cortex (DLPFC).  
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Appendix Figure 2.3 Genomic window filtering process and number of windows remaining. The total number 

of windows remaining in the study for both the Y chromosome and the sum of the autosomes. After filtering, 2.6% 

(591 Kb) of chromosome Y is used to determine mosaic ploidy. In contrast, 7.3% of the autosomes were used to 

calculate ploidy.  
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Appendix  Figure 2.4 Visual inspection of the Y chromosome in each sample found four highly variable, 

poorly sequenced samples. Each of these samples had unusually high depth variation genome wide. Originally 

these samples were considered LOY. Care must be taken to remove poorly sequenced samples as mean depth is often 

reduced in these samples.   
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Appendix Figure 2.5  Y chromosome ploidy distribution before and after density kernel estimation 

correction in each tissue.     
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Appendix  Figure 2.6 Affymetrix SNP6.0 SNP-array copy number probes are more variable than SNP probes. 

The Affymetrix SNP6.0 array provides 8582 copy number probes and 271 SNP probes in the male-specific region of 

chromosome Y. The CN probes provide denser genomic coverage but are more variable than SNP probes. SNP 

probe processing and normalization has been standardized for LOY detection and therefore CN probes were 

removed.  
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Appendix  Figure 2.7 Transformation of mLRRY to rounded SNP-array ratio. To compare LOY more 

accurately between genotype array and WGS platforms, mLRRY values were transformed into a metric called 

rounded SNP-array ratio. Because of the high correlation between WGS copy number and mLRRY, formulas can be 

applied to transform mLRRY values onto an identical scale. Following the formulas from Danielsson et al. (2019), 

mLRRY values were transformed. Extensive testing of samples with paired WGS, ddPCR and SNP-array data found 

that mLRRY values can be transformed to a CN equivalent using the following formula: Y = (2mLRRY)2, where Y is 

the rounded SNP-array ratio (axis on right).  Further, % of LOY cells can be inferred through the following formula: 

LOY(%) = 100*(1-2mLRRY)2 (axis on left). The LOY threshold at -0.082 mLRRY is equivalent to 0.889 CN and 

~10% LOY. Thresholds of increasing LOY severity were set at mLRRY -0.15 which is equivalent to 0.812 CN and 

~19% LOY, and -0.315 mLRRY, equivalent to 0.646 CN and 35% LOY. These thresholds were primarily chosen to 

compare to previous LOY studies, and the values from our analysis are comparable. 
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Appendix Figure 2.8 Distribution of intensity-based ploidy estimates across the genome in 306 elderly males. 

As expected, mLRR values for each chromosome are centered around 0. mLRR of 0 represents expected ploidy. 

Chromosome Y shows significant variation and deviation towards 0, which is not seen in any other chromosome.  
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Appendix  Figure 2.9 Visualized example of SNP-array and WGS concordance in two paired samples. A) Top, 

shows each individual probe and its mLRR value across the MSY in a LOY sample (SNP-array). The red line 

represents the mLRR value. Bottom, WGS sequencing depth across the Y in the same sample. Chromosome Y 

genomic content is reduced to a similar degree using both technologies. B) Another example in an individual that 

does not have LOY. Grey segments represent notable genetic regions on the Y chromosome. From left to right, 

PAR1, XTR (light grey), centromere, heterochromatin.  
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Appendix  Figure 2.10 WGS quantified LOY is not significantly different between cerebellum and 

dorsolateral prefrontal cortex (DLPFC) tissues. Chromosome Y ploidy mean was significantly different between 

whole blood and both cerebellum (p=3.8x10-8; t-test) and DLPFC tissue (p=1.9x10-12; t-test). Chromosome Y ploidy 

was not significantly different between cerebellum and DLPFC (p=0.16; t-test).  
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Appendix 3.1. Y chromosome sequencing problem regions in female samples. When using exonic, as well as 

intronic and intergenic RNA-seq reads as evidence of DNA, technical artefacts are bound to occur. Since females do 

not have a Y chromosome, we can assume all female Y reads are errant reads. Regions of the genome where these 

errant reads collect likely contain elements that reliably lead to erroneous mapping in both male and female samples. 

A) Landscape of female Y chromosome reads across the single-nuclei RNA-seq cohort after filtering (n=24; 

reads=7013). ~30% of female Y reads fall within 3 1kb windows. The insert shows a magnified example of one of 

these windows (intergenic). The false positive reads overlap with an interspersed nuclear element (Alu). This is 

observed across most enriched errant read windows.  B) The queried window above is also observed in male samples. 

Male reads are mapped in the same location as in the females. We assume these reads are technical artefacts.   
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Appendix 3.2. Sequenced cell-type proportions by sample and sex for 48 DLPFC single-nucleus RNA-seq samples.  A) 

Cell-type proportions of isolated cells across 24 male and 24 female samples (n=48). Cell-type proportions are replicated 

between the sexes.  B) Cell-type proportions vary slightly across samples, but for the most part are highly similar. Cluster cell-

type assignments were completed by Mathys et al. 2019.  Astrocyte (Ast), excitatory neuron (Ex), inhibitory neuron (In), 

microglia (Mic), oligodendrocyte (Oli), oligodendrocyte progenitor cell (Opc). 
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Appendix 3.3. Determining the normalized Y read metric cut-off. After read filtering, male specific Y (MSY) region 

reads are normalized by cell by total reads and multiplied by a scale factor of 10000. The logp1 (natural logarithm + 1) is 

then applied to avoid undefined values. Essentially the MSY region is treated as a single gene and normalized as such.  

The LOY cut-off was set at 0.4 which is equivalent to  ~1 Y read per 20,000 reads. The average male normalized Y was 

2.16, while in female samples it was 0.018. The 0.40 cut-off adds an additional 22 LOY cells to the obvious 0 Y read LOY 

cells. Each point represents 1 cell. 
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Appendix 3.4. Chromosome Y gene expression across GTEx tissues.  9 Y-linked genes are ubiquitously expressed 

across human tissues. Additionally, it does not appear that Y-linked gene expression differs significantly between 

cortex tissue and other tissues such as whole blood. This plot was produced via the GTEx multi-gene query tool 

(www.gtexportal.org/home/multiGeneQueryPage). Gene names in blue are expressed in at least 3 cells in the single-

nuclei dorsolateral prefrontal cortex dataset. All expression values are in transcripts per million (TPM).   

http://www.gtexportal.org/home/multiGeneQueryPage
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Appendix 3.5. Chromosome Y gene expression across dorsolateral prefrontal cortex cell-types.  8 Y-linked genes 

are commonly expressed across the major dorsolateral prefrontal cortex cell-types in this dataset. NLGN4Y is the most 

highly expressed Y-linked gene across all cell-types in the single-nuclei dataset which differs from the bulk RNAseq 

GTEx data where RPS4Y1 and EIF1AY are the top expressed Y genes in the cortex.  
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Appendix 3.6. Difference in expression counts and total expressed genes between normal and LOY cells using 

the MSY gene expression counts. A-B) LOY cells have significantly fewer total reads and total expressed genes. 

Using the method from Thompson et al. enriches for low-expressing, low-depth cells and not necessarily cells lacking 

a Y chromosome. 
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Appendix 3.7. Loss of Y rates across increasingly strict quality control thresholds using MSY gene expression 

counts method from Thompson et al. (2019). Across each cell-type, as thresholds on library complexity and total 

counts become stricter, LOY rates are reduced. The highlighted box is cut-off used throughout Chapter 3.  

 



129 
 

 

  

Appendix 3.8. LOY cells are concentrated in low read depth cells. For each cell-type, cells are ranked (left to right) 

by total cell read depth and split by LOY and normal ploidy assignment. Each point is a cell. All cell-types except 

microglia, have a concentration of LOY cells in amongst the lowest expressed cells, although microglia expression is 

reduced compared to the other cell-types.   
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Appendix 3.9. Loss of Y 

proportions and mean Y gene 

expression by cell-type across 

increasing read depth. Top, cells 

were split into 10 proportional bins 

based on cell read depth. LOY 

assignments were made using the 

XY ratio cut-off of 0.005. 

Astrocytes, oligodendrocytes, and 

microglia have elevated rates of Y 

loss. Bottom, female LOY rates 

with increasing cell depth.  
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Appendix 3.10. Loss of Y proportions by mean normalized Y chromosome gene expression by cell type. Single-cell 

data was split into ten proportional groups based on read depth. For each cell-type, LOY proportion and mean normalized Y 

chromosome gene expression were compared. Values correspond with Appendix 3.9. As total Y gene expression increases, 

LOY proportion decreases.  
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Appendix 4 

Affymetrix SNP6.0 male specific Y probes used to detect median log R 

ratio 

 
Affymetrix Male-specific Y probes used to estimate LOY.  

Affymetrix_probe_ID Chr Genomic_position (hg19) 

SNP_A-8655052 Y 2722506 

SNP_A-8469844 Y 2846401 

SNP_A-8567242 Y 3006232 

SNP_A-8289946 Y 3022396 

SNP_A-8327510 Y 3044030 

SNP_A-8647397 Y 3044113 

SNP_A-8537291 Y 3089809 

SNP_A-8346521 Y 3100347 

SNP_A-8656150 Y 3165517 

SNP_A-8572255 Y 3201251 

SNP_A-8352925 Y 3266087 

SNP_A-8543663 Y 3496739 

SNP_A-8369873 Y 3539834 

SNP_A-8289954 Y 3586616 

SNP_A-8638351 Y 3691575 

SNP_A-8687827 Y 3713309 

SNP_A-8330311 Y 3713606 

SNP_A-8600263 Y 3777756 

SNP_A-8349310 Y 3826212 

SNP_A-8370743 Y 3827532 

SNP_A-8680255 Y 3837764 

SNP_A-8364206 Y 3904491 

SNP_A-8465374 Y 3931646 

SNP_A-8353700 Y 4216073 

SNP_A-8304227 Y 4357591 

SNP_A-8425444 Y 4462368 

SNP_A-8407064 Y 4472623 

SNP_A-8432696 Y 4508627 

SNP_A-8289971 Y 4548849 

SNP_A-8289973 Y 4696023 

SNP_A-8289974 Y 4696181 

SNP_A-8306261 Y 4703804 

SNP_A-8320257 Y 4721636 

SNP_A-8319760 Y 4805510 

SNP_A-8360538 Y 4834225 
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SNP_A-8393997 Y 4863907 

SNP_A-8404563 Y 4866464 

SNP_A-8549683 Y 4939870 

SNP_A-8491902 Y 5022306 

SNP_A-8648299 Y 5171911 

SNP_A-8523311 Y 5259959 

SNP_A-8380633 Y 5364159 

SNP_A-8561782 Y 5483659 

SNP_A-8289995 Y 5532303 

SNP_A-8489786 Y 5542746 

SNP_A-8309056 Y 5586774 

SNP_A-8514827 Y 5632507 

SNP_A-8355881 Y 5677457 

SNP_A-8592465 Y 5854793 

SNP_A-8318909 Y 5866261 

SNP_A-8338258 Y 5890420 

SNP_A-8347325 Y 5904411 

SNP_A-8587589 Y 5913967 

SNP_A-8504756 Y 5916713 

SNP_A-8697464 Y 5943453 

SNP_A-8568887 Y 6449216 

SNP_A-8290003 Y 6677619 

SNP_A-8650667 Y 6681479 

SNP_A-8615420 Y 6892243 

SNP_A-8439420 Y 6943522 

SNP_A-8521579 Y 6965215 

SNP_A-8520572 Y 6995523 

SNP_A-8550793 Y 7073423 

SNP_A-8520821 Y 7292720 

SNP_A-8361499 Y 7401836 

SNP_A-8569177 Y 7527958 

SNP_A-8518383 Y 7628484 

SNP_A-8502405 Y 7642823 

SNP_A-8568099 Y 7714986 

SNP_A-8555082 Y 7716262 

SNP_A-8693123 Y 7766712 

SNP_A-8360329 Y 7891188 

SNP_A-8383167 Y 7963031 

SNP_A-8507691 Y 8021340 

SNP_A-8713092 Y 8046731 

SNP_A-8573170 Y 8108722 

SNP_A-8566304 Y 8214827 

SNP_A-8589367 Y 8334875 
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SNP_A-8290006 Y 8353707 

SNP_A-8573547 Y 8418927 

SNP_A-8436917 Y 8424089 

SNP_A-8372352 Y 8502236 

SNP_A-8397097 Y 8533735 

SNP_A-8611867 Y 8558969 

SNP_A-8290008 Y 8576009 

SNP_A-8329411 Y 8590752 

SNP_A-8528768 Y 8614138 

SNP_A-8511719 Y 8667179 

SNP_A-8290010 Y 8679843 

SNP_A-8290011 Y 8680661 

SNP_A-8531040 Y 8728974 

SNP_A-8344561 Y 8796078 

SNP_A-8330416 Y 8906357 

SNP_A-8627092 Y 9131385 

SNP_A-8488238 Y 9131437 

SNP_A-8290012 Y 9170545 

SNP_A-8363005 Y 9392948 

SNP_A-8572231 Y 9841700 

SNP_A-8514449 Y 9958663 

SNP_A-8364073 Y 9984932 

SNP_A-8537348 Y 13887941 

SNP_A-8457681 Y 13964228 

SNP_A-8346213 Y 13964829 

SNP_A-8638845 Y 13974233 

SNP_A-8333138 Y 13992338 

SNP_A-8676343 Y 14001232 

SNP_A-8290014 Y 14028148 

SNP_A-8581506 Y 14031334 

SNP_A-8536948 Y 14197867 

SNP_A-8523431 Y 14231292 

SNP_A-8566334 Y 14286528 

SNP_A-8293961 Y 14345705 

SNP_A-8290016 Y 14392807 

SNP_A-8498269 Y 14416216 

SNP_A-8584255 Y 14577177 

SNP_A-8640091 Y 14641193 

SNP_A-8396630 Y 14664631 

SNP_A-8322132 Y 14698928 

SNP_A-8550103 Y 14804077 

SNP_A-8570506 Y 14813991 

SNP_A-8707909 Y 14901633 
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SNP_A-8699812 Y 14993358 

SNP_A-8290020 Y 15026424 

SNP_A-8306235 Y 15027529 

SNP_A-8438204 Y 15232812 

SNP_A-8564434 Y 15234830 

SNP_A-8436578 Y 15467824 

SNP_A-8507820 Y 15472863 

SNP_A-8520820 Y 15517851 

SNP_A-8390409 Y 15526751 

SNP_A-8290024 Y 15590342 

SNP_A-8485881 Y 15590674 

SNP_A-8422313 Y 15591537 

SNP_A-8570141 Y 15594523 

SNP_A-8423339 Y 15651438 

SNP_A-8290262 Y 15818409 

SNP_A-8582170 Y 15879017 

SNP_A-8465701 Y 15935524 

SNP_A-8499470 Y 15944828 

SNP_A-8680540 Y 16185081 

SNP_A-8604154 Y 16202980 

SNP_A-8474085 Y 16242316 

SNP_A-8378741 Y 16315153 

SNP_A-8676803 Y 16368310 

SNP_A-8290265 Y 16377198 

SNP_A-8475261 Y 16401405 

SNP_A-8290266 Y 16415916 

SNP_A-8615173 Y 16683871 

SNP_A-8290267 Y 16699334 

SNP_A-8649280 Y 16742224 

SNP_A-8642739 Y 16773870 

SNP_A-8676185 Y 16804852 

SNP_A-8314584 Y 16836079 

SNP_A-8637392 Y 17011456 

SNP_A-8295774 Y 17132580 

SNP_A-8458096 Y 17174741 

SNP_A-8470535 Y 17394111 

SNP_A-8543515 Y 17398598 

SNP_A-8655113 Y 17412198 

SNP_A-8607809 Y 17495914 

SNP_A-8589485 Y 17502468 

SNP_A-8290269 Y 17510288 

SNP_A-8418205 Y 17559652 

SNP_A-8688109 Y 17570599 
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SNP_A-8501699 Y 17614366 

SNP_A-8676818 Y 17686886 

SNP_A-8385899 Y 17755905 

SNP_A-8290274 Y 17762668 

SNP_A-8691942 Y 17766762 

SNP_A-8614867 Y 17782178 

SNP_A-8565299 Y 17881230 

SNP_A-8586236 Y 17891241 

SNP_A-8545763 Y 18066156 

SNP_A-8380638 Y 18097251 

SNP_A-8558524 Y 18101521 

SNP_A-8697932 Y 18117193 

SNP_A-8290275 Y 18167403 

SNP_A-8290276 Y 18167479 

SNP_A-8483248 Y 18248698 

SNP_A-8433730 Y 18381735 

SNP_A-8290277 Y 18561042 

SNP_A-8290278 Y 18578476 

SNP_A-8705225 Y 18596847 

SNP_A-8295953 Y 18700150 

SNP_A-8290279 Y 18747493 

SNP_A-8543184 Y 18759669 

SNP_A-8304713 Y 18786174 

SNP_A-8290280 Y 18831084 

SNP_A-8603634 Y 18860537 

SNP_A-8496337 Y 18888200 

SNP_A-8439125 Y 19038302 

SNP_A-8310517 Y 19045552 

SNP_A-8572233 Y 19048602 

SNP_A-8580553 Y 19054889 

SNP_A-8413183 Y 19077394 

SNP_A-8420219 Y 19166861 

SNP_A-8368215 Y 19179335 

SNP_A-8519988 Y 19179540 

SNP_A-8537039 Y 19198212 

SNP_A-8592406 Y 19233673 

SNP_A-8594074 Y 19279765 

SNP_A-8329434 Y 19315988 

SNP_A-8653199 Y 19349615 

SNP_A-8411857 Y 19370916 

SNP_A-8417266 Y 19372700 

SNP_A-8295972 Y 19563894 

SNP_A-8372528 Y 20834703 
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SNP_A-8332143 Y 20837553 

SNP_A-8611029 Y 21080707 

SNP_A-8595327 Y 21088297 

SNP_A-8452521 Y 21159055 

SNP_A-8290281 Y 21309376 

SNP_A-8324813 Y 21409706 

SNP_A-8352188 Y 21528257 

SNP_A-8498938 Y 21535086 

SNP_A-8591520 Y 21717208 

SNP_A-8290282 Y 21722998 

SNP_A-8348747 Y 21730257 

SNP_A-8608816 Y 21784286 

SNP_A-8412369 Y 21867787 

SNP_A-8468019 Y 21917313 

SNP_A-8469015 Y 21917832 

SNP_A-8555638 Y 21983827 

SNP_A-8331392 Y 21990257 

SNP_A-8675562 Y 22003770 

SNP_A-8657328 Y 22072097 

SNP_A-8521142 Y 22072340 

SNP_A-8604166 Y 22214221 

SNP_A-8511463 Y 22346168 

SNP_A-8474444 Y 22725379 

SNP_A-8717529 Y 22796697 

SNP_A-8682494 Y 22866703 

SNP_A-8344910 Y 22914378 

SNP_A-8573174 Y 22918577 

SNP_A-8355942 Y 22934109 

SNP_A-8651773 Y 22972939 

SNP_A-8465368 Y 23040647 

SNP_A-8298161 Y 23134896 

SNP_A-8329413 Y 23443971 

SNP_A-8525311 Y 23473201 

SNP_A-8539904 Y 23631629 

SNP_A-8561218 Y 23883529 

SNP_A-8390603 Y 23984056 

SNP_A-8496894 Y 23993156 

SNP_A-8371607 Y 24359931 

SNP_A-8635714 Y 24401940 

SNP_A-8365189 Y 24475669 

SNP_A-8681669 Y 28509790 

SNP_A-8582662 Y 28606269 

SNP_A-8383267 Y 28612323 



138 
 

SNP_A-8401720 Y 28733101 

SNP_A-8433021 Y 28758193 

SNP_A-8716074 Y 58969307 

SNP_A-8645689 Y 58970351 

SNP_A-8684492 Y 58977087 

SNP_A-8627722 Y 58977828 

SNP_A-8690438 Y 58997679 

SNP_A-8636108 Y 59001292 

SNP_A-8623399 Y 59001873 

SNP_A-8509720 Y 59002462 

SNP_A-8525858 Y 59005350 

SNP_A-8455959 Y 59020166 

SNP_A-8377945 Y 59020401 

SNP_A-8406582 Y 59030720 
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Appendix 5 

ROSMAP library preparation and sequencing methods 
 

WGS library preparation and sequencing.  

 

As detailed in De Jager et al. (2018). DNA was extracted from whole blood, DLPFC and cerebellum. DNA 

libraries were generated using the KAPA Library Preparation Kit. Final libraries were evaluated using 

fluorescent-based assays including qPCR with the Universal KAPA Library Quantification Kit and Fragment 

Analyzer (Advanced Analytics) or BioAnalyzer (Agilent 2100). Libraries were sequenced on an Illumina 

HiSeq X sequencer (v2.5 chemistry) using 2 × 150 bp cycles. Paired-end sequencing reads were aligned to 

GRCH37 using BWAmem (version 0.7.15). Duplicate reads were marked using Picard MarkDuplicates (version 

2.4.1). GATK IndelRealigner (version 3.5) used to improve the consistency of read alignments in regions that 

contain insertions and deletions, and base quality score recalibration was performed using the GATK BQSR 

(version 3.5). 

 

Single-nuclei library preparation and sequencing. 

As detailed in Mathys et al. (2019). The protocol for the isolation of nuclei from frozen post-mortem brain tissue 

was adapted from Swiech et al. (2014).  Brain tissue was homogenized using a tissue homogenization buffer and 

filtered through a 40mm cell strainer to isolate individual cells. The nuclei were separated by ultracentrifugation at 

9000 RPM, washed and subject to several subsequent rounds of centrifugation. The nuclei were counted and 

diluted to a concentration of 1000 nuclei per microliter in PBS.  

snRNA-seq libraries were prepared using the Chromium Single Cell 3’ Reagent Kits v2 according to the 

manufacturer’s protocol (10x Genomics). The generated scRNA-seq libraries were sequenced using Illumina 

NextSeq 500/550 High Output v2 kits (150 cycles). Raw base call (BCL) files generated by Illumina sequencers 

were demultiplexed and converted to FASTQ files using cellranger mkfastq (Cell Ranger software 2.0.0). 
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Appendix 6  

Single-nuclei processing code segments 

 

In order to capture pre-mRNA transcripts that are common in the nuclei, a pre-mRNA transcriptome is required. 

The command below is applied to the transcriptome and outputs a pre-mRNA transcriptome. Essentially all 

transcripts (including intronic transcripts) are set to exonic. (Method advised by 10x Genomics)  

awk 'BEGIN{FS="\t"; OFS="\t"} $3 == "transcript"{ $3="exon"; print}' \ 

       GRCh38-3.0.0.gtf > GRCh38-3.0.0.premrna.gtf 

 

This modified GTF file (Gene transfer format; used to hold information about gene structure) is processed into a 

Cell Ranger package, along with the reference genome. This package is used for sequence alignment using Cell 

Ranger count.  

cellranger mkref \ 

--genome=GRCh38-3.0.0_premrna \ 

--fasta=GRCh38_genome.fa \ 

--genes=GRCh38-3.0.0.premrna.gtf 

 

cellranger count \ 
  --id=$subject \ 
  --fastqs=$fastqs \ 
  --sample=$sample_name \ 
  --transcriptome=$reference_genome 

 

Below is the command used to filter single-nuclei RNAseq reads. The meaning of each flag is listed:   
 
 
samtools view -F 1536 -q 255 $sample_cell_bam Y:2781480-56887902  

-F flag filtering reads inversely based on a SAM flag value. In this case the flag 1536 refers to reads that fail 

quality checks, and PCR duplicate reads.  

 

-q flag for filtering reads based on mapping quality (MAPQ). 255 is the maximum mapping quality provided by 

the STAR aligner. Therefore, only reads with maximum mapping quality are kept.  

 

Y:2781480-56887902 - location of the male specific Y region (hg38) 

 
 


